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Abstract

This paper uses a partial equilibrium model to explore the options for a U.S. soybean
farmer given the heightened uncertainties facing U.S. exports of agricultural prod-
ucts including tariffs, African Swine Fever (ASF), and weather. The goal of this Monte
Carlo analysis is to allow the user to explore certain strategic choices available to the
farmer and then generate a range of possible revenues. These action choices will be
summarized in terms of the expected seasonal revenue. As an experiment, I run this
simulation with baseline results and no uncertainty. I find that the optimal output for a
farmer is a higher soy to corn profile, lower sales of futures contracts, and lower prod-
uct storage. I then add uncertainty in terms of weather, tariffs, ASF, market facilitation
programs (MFP’s), and corn planting. Next I track the changes to the optimal out-
puts given these uncertainties. This paper contributes to the literature on agricultural
modeling and risk modeling by incorporating several different types of farm–related
uncertainty and producing realistic farm–level analysis of outcomes. I find that un-
certainty from these variables will change how a farmer should plan for their planting
year.
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1 Introduction

Given recent changes in the agricultural trade environment–shifting market conditions,

policy decisions, and increasingly unpredictable weather, farmers now face additional

uncertainty in their planting, storage, and selling decisions. In this paper, I attempt to

predict these adjustments in decision–making by taking a bottom–up, or farm–level,

approach to modeling the impact of policy changes. Specifically, the model presented in

this paper analyzes the optimal choices of a U.S. soy and corn farmer given several sources

of uncertainty. Previous work on farm–level modeling has focused singularly on uncertainty

or on price changes from tariffs and has generally concluded that uncertainty affects the

farmer and their decisions. Therefore, I address this gap in the agricultural economics

literature by explicitly modeling a diverse set of uncertain environmental and

policy–related external factors for an individual farmer.

Several different methods have been employed to address risk at the farm–level. Bar–Shira

et al. (1994) developed an econometric approach to measuring farmers’ risk aversion. They

estimated Arrow-Pratt coefficients of risk aversion, allocating land among different crops

and time between leisure and labor. Bar–Shira et al. (1994) found that farmers exhibit

absolute risk aversion regarding wealth (Bar-Shira, Just and Zilberman, 1997). Kaiser and

Boehlje (1980) incorporated dynamics by creating a multi–period risk model of farm

planning. Their empirical model was built to model a farmer in the U.S. Corn Belt; it

demonstrates the applicability of the MOTAD (Minimization of Total Absolute Deviations)

modeling framework. While the Kaiser and Boehlje model used utility functions

incorporating income to optimize farm planning, it did not address policy changes in its

calculations (Kaiser and Boehlje, 1980).

Within the farm planning model literature, Merrill (1965) analyzed three models: a

multi–period linear programming model, a stochastic programming model, and a linear
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team programming model. Merrill found that cash reserves are the most important

difference between decision–making structures (Merrill, 1965). Itoh et al. (2003) pointed

out that linear programs for farm planning do not capture decision–making, as these

programs omit uncertainties such as weather. As a result, the authors built a model with

uncertain (stochastic) variables for weather to predict farm decision–making (Itoh, Ishii

and Nanseki, 2003). On the agricultural policy side, Zhou et al. (2018) studied the

long-run impacts of tariffs on the overall U.S. soybean industry. The authors review the

literature on price changes and welfare changes and predict that, while Brazil and

Argentina benefit from trade tensions, soybean production in the United States will decline

by 11 to 15 percent. In sum, Zhou et al. predict that these trade tension conditions will

lead to a global welfare loss of 1.2 to 1.8 billion dollars. However, the authors concluded

that for U.S. farmers, the tariffs have long term consequences that are more complicated

than welfare loss, particularly regarding anxiety over uncertainty (Zhou, Baylis, Coppess

and Xie, 2018). While the literature on farm planning models identifies several factors in

farmer decision making, these papers typically analyze just one type of risk in isolation and

do not consistently account for major sources of uncertainty, such as policy and

environmental change.

Although I use a partial equilibrium model, there has been extensive work on uncertainty

using a computable general–equilibrium (CGE) model. In a dynamic stochastic CGE

model, the notion of uncertainty is developed by the agent forming expectations that a

shock will happen later with some magnitude and direction. Pratt et al. (2013) used a

dynamic CGE model to calculate the path of the global economy given several layers of

uncertainty, such as tourism demand. The authors explained how their model can be

applied to agriculture production risks, especially in modeling welfare losses due to

exogenous shocks (Pratt, Blake and Swann, 2013). To calculate risk from another source of

uncertainty, Phimister and Roberts (2017) built uncertainty into their CGE model to
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predict risk in new renewable resource development projects (Phimister and

Roberts, 2017). Indeed, several papers more closely related to agriculture focus on climate

as a key uncertainty, including Valenzuela et al. (2005) and Berger and Troost (2013).

Valenzuela et al incorporated price volatility into their CGE setting to improve predictive

power, while Berger and Troost built a multi–agent system, where the agents are other

farmers adapting to new land use and resource techniques. Both papers found that the

elements incorporated into their CGE setting revealed new aspects of agricultural

adaptation (Valenzuela, Hertel, Keeney and Reimer, 2005)(Berger and Troost, 2014).

This paper contributes to the literature by incorporating several different sources of

uncertainty in a Monte–Carlo environment to capture mitigating effects of external policy

changes and uncertainties to the farmer. I use a partial–equilibrium model to more directly

capture the impact on an individual farmer’s crops. By using the partial–equilibrium

model, I can combine the farmer risk and uncertainty literature with the tariff impact

literature. In the context of farm–planning literature, the research question herein

examines the optimal choices for a farmer given multiple uncertainties, and how a farmer’s

choices change with added uncertainty. Thus, my question adds dynamics to the traditional

multi–period farm planning model. I also incorporate important methodological findings

from previous work, including bounding my parameters and production decisions for the

farmers to: (1) capture the farmer’s risk aversion, and (2) to make the model more realistic.

Using an industry–specific partial equilibrium model with Monte Carlo sampling, I find

that uncertainty from weather, tariffs, downstream demand shocks (such as ASF and other

farming effects), market facilitation programs (MFP’s), and corn planting will change how

a farmer should plan for his/her year. From my baseline results, which do not account for

uncertainty from policy or environmental shocks, the farmer would devote most of his/her

land to soy, sell a medium amount of his/her crop on the futures market, and retain a small
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amount of storage. With uncertainty, the farmer would devote almost all of his/her land to

corn, sell a large amount on the futures market in period 0 and little in period 1, and thus

store much more of his/her crop until the next planting season. In section 2, I explain the

model followed by two policy experiments in section 3. I conclude with some uses and

implications of this approach.

2 Model

Herein, I employ a farm–level, partial equilibrium planning model, with Monte Carlo

sampling. In this context, the term, "farm–level," specifies the impmact or the effects on

one particular farmer. In this model, a price–taking, profit maximizing feed farmer

optimizes over four periods: periods (0), (1), (2), and (3). These four periods correspond to

one entire production year. The farmer has three different action choices that determine

their expected revenue: (a) adjusting their soy—corn ratio (portfolio), (b) selling their

products on the futures market, and (c) storing their product into the next season.1 2 3 In

each period, the farmer encounters random policy and/or environmental shocks: tariffs,

weather, ASF, market facilitation programs, and other farming effects. Tariffs and ASF

enter as a demand–side shock and will last from periods 1 to 3 (with an initial effect in

period 0). Weather and other farming effects (corn planted previous year), enter as a

supply–side shock and last the entire model, periods 0 to 3. Market facilitation programs
1One action choice that is unavailable to the farmer is that the farmer cannot redirect his/her production

to other countries. The model does include a non–subject source of soybeans and corn for the destination
country, although not for the producer. One reason for this specific model design is because the farmer
usually does not make this decision; rather, the decision is typically made farther downstream with an
aggregator. Furthermore, many countries do not import U.S. soy and corn as there are non–tariff barriers in
place against GMO soy and corn. These barriers makes trade re–direction difficult in feed markets (Lyons
and Oldham, 2014; Pramik, 2018).

2Because we know that farmers are risk averse, the ratio of soy and corn sold between period 0 and period
1 cannot be more than 70 percent of their crop (Turvey and Baker, 1989).

3In period 2, the farmer can choose to store some of his/her crop to period 3. The farmer can choose to
store between 0 and 100 percent of the remaining production in period 2 (that was not sold in periods 0 or
1) to period 3 (Good, 2011).
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enter as a direct price shock, and changes each iteration in the Monte Carlo.

The goal of this model is to investigate how a farmer’s optimal behavior changes in

response to unforeseen shocks throughout the production year. Therefore, I re–run the

model 1000 times and generate a distribution of outcomes. I then observe these outcomes

to find how a farmer’s decision–making may change given these different risks.

In period 0, suppose the farmer makes their planting decisions and futures market sales

decisions. There is an initial user–specified tariff input in this period, as well as an initial

ASF effect. I use historical average tariff levels for the experiment. As we move between

periods, shocks will be introduced that can change the prices received and quantities

produced by the farmer. Tariffs and ASF enter in period 1 as shocks to the market, and

their effect on quantities and prices will be calculated through a partial–equilibrium model.

Tariffs and ASF will change the producer price received by the farmer, as the farmer is a

price–taker. These tariffs and ASF will continue to shock prices in periods 2 and 3. Market

facilitation programs only shock the model once in period 0 and reflect a vertical shift in

producer price received in all periods.

Weather will influence both the market price and the quantity harvested by the farmer as a

supply shock. I determine the weather impact on market prices through trend analysis from

10 years of data for soy and corn, from 2009 to 2019. The quantity shock comes in harvest

period 2, where the farmer could harvest up to 30 percent less of soy or corn if the weather

is consistently bad throughout periods 0 to 2. Finally, I identify a "corn planting effect,"

which can be categorized as any environmental factor such as pests, disease, etc., that will

only affect the individual farmer and only one of his/her crops. The "corn planting effect"

can impact the quantity harvested in period 2 of that crop by up to 10 percent.

Within period 0, prices are determined by a user input of the current spot price, and

quantities of soy and corn are determined by a randomly–drawn strategy for the farmer.
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How much the farmer sells on the futures market is also randomly drawn. The farmer will

receive the delivery price for that contract, calculated by a futures curve (described below).

The equivalent pattern applies to period 1; the delivery price on futures contracts evolves

according to the futures curve. How much he/she sells on the futures contract is randomly

drawn. In period 2, the farmer will sell a randomly–drawn amount of his/her remaining

harvest based on the effects of weather and environmental factors, and on the quantity

available to said farmers. If there is any amount of his/her harvest that has not been sold in

period 2, the farmer will ensure that the unsold portion of harvest will be stored and carried

over into period 3. That stored harvest will sell at the period 3 spot price. The farmer

incurs a cost to storing the product, by which the farmer loses 2 percent of his/her quantity

of stored soy and 3 percent of his/her quantity of stored corn.

The main output of this model is the farmer’s profit.

• (P ∗) is the delivery or spot price received by the farmer in the relevant period j;

• (Q) is the quantity sold of soy or corn based on the farmer’s portfolio allocation;

• (FC) is the fixed cost of the farm; and

• (V C) is the variable cost of soy or corn.

For the futures market sales, in period 0, the farmer will sell a portion of his/her soy or

corn at the period 2 delivery price or P 0∗ . In period 1, the delivery price will adjust based

on uncertainties introduced between periods 0 and 1, and the farmer will sell a portion of

his/her harvest on the futures market at the new delivery price of P 1∗ . In periods 2 and 3,

the farmer will sell his/her remaining harvest at the spot price or P 2 and P 3. Profit is then

calculated as:

6



πj = P j∗

soyQ
j
soy + P j∗

cornQ
j
corn − V Cj

soy − V Cj
corn − FCj ∀j (1)

π =
3∑

j=0

(πj) (2)

The quantities of soy and corn sold in each period are chosen as a percentage of the harvest.

• β is the percentage of the acreage chosen for soy;

• (A) is the amount of acres on the farm; and

• (I) is production per acre in bushels:

Qsoy = βAIsoy (3)

Qcorn = (1− β)AIcorn (4)

The quantity sold in each period at the delivery price on the futures market for that period

is determined by equation (5), where (α) is a percentage of the total annual quantity:

Qj
k = αjQ̄k ∈ {corn, soy} ∀ j (5)

Output of corn this season is partially determined by whether corn was planted in the

previous season. To account for this, I include a quantity effect in period 1, δ, following

Plastina (2018). δ takes a value from (0.0, 0.1) or 0 percent to 10 percent of the harvest,

and is drawn from a uniform distribution at the beginning of each simulation. Therefore,

output of corn in period 1 is equal to:
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Q1
corn = Qcornα1δ (6)

Fixed costs are calculated from the University of Wisconsin Agronomy group

(Agronomy, 2014) and are amortized evenly across all periods:

FCj =
FC

4
(7)

Variable costs per acre for soy and corn, respectively, are divided evenly among the periods

(for the sake of simplicity)4. The numerical values are drawn from 2019 data:

V Cj =
V C

4
(8)

Pricing is where much of the uncertainty in the model is introduced. I assume that the

farmer knows the prices for both soy and corn at the year’s beginning. Agriculture has a

robust futures market, where the farmer can create contracts promising a certain amount

of his/her harvest at a futures market price, or the delivery price. The delivery price is

based on the compound annual growth rate and seasonal effects. The farmer has four

options for selling his/her products: he/she may,

1. Sell in period 0 at the period 2 (harvest) delivery price on the futures market,

2. Sell in period 1 at the new period 2 (harvest) delivery price on the futures market,

3. Sell in period 2 at the spot price,

4. Store some product from harvest into the next year and sell at the period 3 spot price.
4see Table 1 for numerical values and citations.
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In each period, there may be shocks due to Chinese tariffs, ASF, and weather that could

alter the spot and delivery prices.

The initial tariff for both soy and corn in period 0 is based on average tariff levels, and will

increase in period 1. Periods 2 and 3 price effects are based on a percentage of period 1,

where a random variable evenly distributed from 0 to 1, is multiplied by the period 1 tariff.

This tariff is added to the period 1 tariff to create a larger effect:

Tt+1 = c ∗ Tt for t in {1, 2} where c iid∼ ∪(0, 1) (9)

I implement tariff changes with the standard Armington (1969) assumption which states

that products are differentiated by source. The Armington model produces estimates at

the industry level, although not at the level of individual producers/farmers

(Armington, 1969); it is incorporated into the partial equilibrium model performed within

our Monte Carlo simulations via price elasticities of demand that determine how consumers

react to a price change from the imposition of a tariff. This model allows for nesting of any

Chinese soy or corn feed product and non–subject (Brazil/Argentina) imports, allowing for

a higher elasticity of substitution between the two.5 To see the demand and supply

equations that determine the market price, refer to Hallren and Riker (2017).

We base the producer price received in each period on a futures curve. The futures curve is

calculated by using 2009–2018 monthly data that I then annualize into a compound annual

growth rate. I use monthly, rather than quarterly, data as the 4 periods in this model do

not necessarily line up exactly with quarters; the four periods make up one complete

growing season. The length of each period is a function of environmental factors such as

rainfall, seasonal average temperatures, weather, and the timing of planting decisions. For
5We allow a higher elasticity of substitution between Chinese soy and corn production and other sources

of supply because Chinese soy and corn is generally used for human consumption, rather than animal feed.
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optimal comparison and analysis, I needed to see the differences in the corresponding

planting periods, rather than exact quarters in a year. The compound annual growth rate

function is as follows:

GRY = (
Pm+12

Pm

)(
1
12

) − 1 (10)

where Pm+12 is the closing month’s price and Pm is the opening month price. I then take

the growth rate for each year and calculate the average and standard deviation for

month–to–month percent changes in prices. The average and standard deviation for both

soy and corn are then placed on an inverse normal distribution.

For each iteration of the Monte Carlo simulation, the model randomly selects a compound

annual growth rate along this distribution which will be used for that iteration. Through

trend analysis, I also use the data to add seasonal effects. The delivery price in period 1 is

always higher than at harvest in period 2; periods 0 and 3 usually fall in the middle. The

modeler enters the period 0 spot price, as it is known by the farmer, and then the futures

curve price in period 3 is calculated. The period 3 delivery price is adjusted by season and

growth to calculate a period 1 and period 2 delivery price.6 MFP’s will then shift that

price vertically for soy and corn depending on the level of the programs as a supply–side

shock. Between periods, the futures curve changes depending on tariffs, ASF, and weather.

Weather can change the magnitude of the seasonal effects and the CAGR, while tariffs,

ASF, and weather will vertically shift the market price.7

The tariffs are randomly selected in period 1 between 0 and 60 percent (Durisin and

Robinson, 2019) (Regmi, 2019). The tariff shocks are specified to illustrate the effect of
6While I use the period 2 futures price as the delivery price on futures contracts in periods 0 and 1, I

estimate the futures curve in all periods in order to observe changes over time.
7Tariffs and ASF will shift the price through the partial–equilibrium model; weather affects the market

price based on my trend analysis.
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this form of uncertainty on farm-level decisions, and thus are only chosen to reflect a range

of possible outcomes for the farmer. These randomized tariff shocks are not in any way

meant to match specific recent changes in Chinese tariffs. I chose 60 percent as a

reasonable maximum based on historical data and WTO standards. I assume that the

farmer knows the intensity of ASF in the initial period 0, by seeing it in the news or

hearing from their contractors how the demand for feed is being affected, and can measure

the intensity from 0 to 10. That number will be re–calibrated as an ad valorem rate in

period 0 between 0 and 70 percent for soy and 0 and 56 percent for corn (Pitts, Whitnall

et al., 2019; Singh, 2019; Frost, 2019; Patton, 2019).

In periods 2 and 3, the partial tariff effects will be random between 0 and 100 percent of

the price effects in period 1. Both tariffs and ASF will negatively shock sales and the price

received by the farmer.8 The prices, quantities, and growth rate are adjusted for weather.9

Simulations are based on 1,000 iterations of calculating profit. Inputs are allowed to vary

in each of the 1,000 iterations. The simulations will provide an expected value for profit,

and the model maximizes expected profit given inputs. The model then solves the

optimization problem by selecting the strategy among the 1,000 iterations which yielded

the highest profits. I tested this several times for each of the following Monte Carlo

optimizations to ensure accuracy.
8In this case, I assume that ASF negatively shocks prices because of the negative demand shock for feed

from ASF.
9The weather effect is initially valued as an “intensity” in each period between 0 and 1, which will then

effect prices and quantity differently depending on the period. The distribution is a normal distribution with
the mean being “average” weather, and a high standard deviation. Assumptions include: (1) weather can
create damage to up to 20 percent of soy and corn crops with adverse weather conditions, and (2) harvest
quantities decrease overall due to poor weather, these conditions will create a direct, positive effect on prices;
however, the weather conditions will slightly depress the compound annual growth rate(Willenbockel, 2012).
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3 Experiment

3.1 Baseline Results

I use data from December 2019 to calibrate the model. It is run six times, each time

adding a new layer of uncertainty. To predict an optimal strategy for the farmer, the model

optimizes the agent’s choices of portfolio, futures sales, and storage. The inputs that I used

for the farm are found in Table 1.

My baseline results assume that there will be no tariffs introduced during the year, no

uncertainty from ASF, and no uncertainty from planting corn the previous year.10 I

normalize weather patterns and market facilitation programs (MFP’s) down to their

average.

I also use industry inputs to calibrate the partial–equilibrium model embedded in the

Monte Carlo simulation. These numbers are based upon U.S. soy and corn exports to

China, with China and Brazil/Argentina supplying the Chinese soy and corn markets. The

industry inputs are found in tables 2 and 3.

This model predicts that the maximum profit strategy for a farmer with no uncertainties

will be a slightly higher soy profile over corn, low futures sales, and medium-low storage

(Table 4).

3.2 With Uncertainty from Weather

I begin my experiments by allowing weather to vary with uncertainty. In each period, the

weather varies, which in turn will change prices, quantities, and the growth rate of prices.

The farmer’s optimal strategy is similar to the baseline results with uncertainty from
10With 1000 iterations of the Monte Carlo, outputs were stable across the following experiments.
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weather in terms of the soy to corn profile, storage, and futures sales, suggesting that

weather affects soy and corn in the same way (Table 5).

3.3 With Uncertainty from Tariffs

In this paper’s second experiment, I add uncertainty from tariffs into the model. There will

be an unexpected shock in period 1 that will then continue to shock prices throughout

periods 2 and 3 depending on a random distribution. With uncertainty from both weather

and tariffs, the optimal strategy for the farmer changes to a higher soy profile, lower

futures sales, and much higher levels of storage (Table 6). I attribute the changing results

from adding tariffs to the price shocks from the tariffs and the different elasticities between

soy and corn.

3.4 With Uncertainty from ASF

Now I add uncertainty from ASF as an additional ad valorem shock to foreign demand

which will act as a proxy shock to export demand. As swine producers favor soy over

corn–based feed, the ASF shock has a disproportionate effect on soy, leading to a change in

the optimal strategy toward a more even soy-corn profile, with low futures sales and

medium storage (Table 7).

3.5 With Uncertainty from MFP’s

Next, I add uncertainty from Market Facilitation Programs as a direct shock to prices

depending on the level (levels are based on past 20-year ranges). There is a range of

outputs depending on the levels of MFP’s; however, I conclude that there will be a higher

ratio of corn to soy, medium–low futures sales, low storage of soy, and high storage of corn

(Table 8).
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3.6 With Uncertainty from Corn Planting

The final layer of uncertainty in this analysis is from corn planting, or environmental

factors that only affect one crop, which, in this case is corn. Farmers run a certain level of

risk by choosing to plant corn more than one year in a row, as mineral–depletion in the soil

is a concern. If the farmer planted corn the year before (an input in the model), there will

be a random shock to quantity harvested. I find further that there is a high corn to soy

ratio and medium-low futures sales, but with lower storage of corn and higher storage of

soy (Table 9).

4 Conclusions

In this paper, I report a series of farm–level Monte Carlo simulations that model optimal

farm planning decisions for a farmer given uncertain variables such as tariffs, African Swine

Fever, and weather. This model incorporates partial–equilibrium modeling to simulate the

effects of policy changes on a price–taking farmer.

In a simulation for a large farm in the United States with China as the destination country

and Brazil or Argentina as alternative sources of supply over China, with current price

levels and common output levels for soy and corn, this model finds that the optimal choice

for farmers will depend on the level of uncertainty between certain variables. This paper’s

baseline results with no uncertainty indicate that a high ratio of soy to corn, low futures

sales, and low storage will be optimal for the farmer to maximize their profit. With the

added layers of uncertainty from tariffs, ASF, MFP’s, corn, and weather, the optimal choice

reverses to a high corn to soy ratio, medium futures sales, and lower levels of storage.

This paper contributes to the literature on agricultural modeling by introducing several

different types of uncertainty into a farmer’s profit planning. This model does not attempt
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to determine which tariff or non–tariff measure is optimal, nor does it try to determine

which overall price or tariff levels are optimal. This model is focusing on the decisions of

individual farmers; it does not estimate the overall welfare effects on U.S. farmers.

In future research, this model can be used to explore how different policy experiments may

affect producer decision–making and what policy changes to make that may be

profit–maximizing for a farmer. As this model is built for changing inputs, this model can

also be used year–by–year to simulate farmers decisions given the current level of

uncertainty in agriculture.
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5 Tables

Table 1: Model Inputs

Input Value Source

Period 0 current price per bushel, soy $9.04 Business Insider (n.d.b)

Period 0 current price per bushel, corn $3.70 Business Insider (n.d.a)

Farm Acreage 1300 MacDonald and Hoppe (2017)

Fixed costs (farm) $15,000 Plastina (2020)

Fixed costs (per acre) $50 Plastina (2020)

Variable cost per acre, soy $400 Plastina (2020)

Variable cost per acre, corn $300 Plastina (2020)

Storage cost, soy 3 percent Russell (2001)

Storage cost, corn 2 percent Russell (2001)

Production per acre, soy (bushels) 58 Plastina (2020)

Production per acre, corn (bushels) 140 Plastina (2020)
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Table 2: Soy Industry Inputs

Input Value 11

Share of Chinese production 10

Share of U.S. production 40

Share of Brazil/Argentina Production 50

Supply Elasticity, China 3

Import Supply Elasticity, U.S. 8

Import Supply Elasticity, Brazil/Argentina 3

Total Industry Demand Elasticity -1

Elasticity of Substitution, U.S. and Nest 5

Elasticity of Substitution, China and Brazil/Argentina 7

11The current values for these inputs are based on Soderbery (2015) and a qualitative analysis of the soy
and corn industries.
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Table 3: Corn Industry Inputs

Input Value 12

Share of Chinese production 10

Share of U.S. production 45

Share of Brazil/Argentina Production 35

Supply Elasticity, China 3

Import Supply Elasticity, U.S. 7

Import Supply Elasticity, Brazil/Argentina 5

Total Industry Demand Elasticity -1

Elasticity of Substitution, U.S. and Nest 4

Elasticity of Substitution, China and Brazil/Argentina 8

Table 4: Baseline Results

Action Choice Optimal Strategy

Soy portfolio, percent 75.97

Corn portfolio, percent 24.03

Period 0 sales, futures market, share of total 4.20

Period 1 sales, futures market, share of total 11.09

Production stored from period 2 to period 3, soy, percent 30.00

Production stored from period 2 to period 3, corn, percent 11.82

12The current values for these inputs are based on Soderbery (2015) and a qualitative analysis of the soy
and corn industries.
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Table 5: Results with Weather

Action Choice Optimal Strategy

Soy portfolio, percent 72.92

Corn portfolio, percent 27.08

Period 0 sales, futures market, share of total 2.88

Period 1 sales, futures market, share of total 17.20

Production stored from period 2 to period 3, soy, percent 35.76

Production stored from period 2 to period 3, corn, percent 32.51

Table 6: Results with Weather and Tariffs

Action Choice Optimal Strategy

Soy portfolio, percent 89.63

Corn portfolio, percent 10.37

Period 0 sales, futures market, share of total 2.26

Period 1 sales, futures market, share of total 6.92

Production stored from period 2 to period 3, soy, percent 76.20

Production stored from period 2 to period 3, corn, percent 60.05
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Table 7: Results with Weather, Tariffs, and ASF

Action Choice Optimal Strategy

Soy portfolio, percent 49.95

Corn portfolio, percent 50.05

Period 0 sales, futures market, share of total 0.09

Period 1 sales, futures market, share of total 28.63

Production stored from period 2 to period 3, soy, percent 37.51

Production stored from period 2 to period 3, corn, percent 66.31

Table 8: Results with Weather, Tariffs, ASF, and MFP’s

Action Choice Optimal Strategy

Soy portfolio, percent 3.97

Corn portfolio, percent 96.03

Period 0 sales, futures market, share of total 15.18

Period 1 sales, futures market, share of total 2.33

Production stored from period 2 to period 3, soy, percent 29.29

Production stored from period 2 to period 3, corn, percent 84.79
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Table 9: Results with Weather, Tariffs, ASF, MFP’s, and Corn Planting

Action Choice Optimal Strategy

Soy portfolio, percent 3.22

Corn portfolio, percent 96.78

Period 0 sales, futures market, share of total 22.04

Period 1 sales, futures market, share of total 1.72

Production stored from period 2 to period 3, soy, percent 47.07

Production stored from period 2 to period 3, corn, percent 63.64
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