Import Stockpiling & Anticipated Tariff Changes D. Riker, 08/05/19 This sector-specific partial equilibrium (PE) model quantifies the reaction of imports to an anticipated future tariff increase. If it is economical to stockpile, there will be a surge of imports with the announcement of a future tariff increase and a magnified decline in imports after the tariff increase occurs. This version of the model has THREE sources of supply: domestic production, imports subject to the tariff policy change, and imports not subject to the tariff policy change. There are three periods in the model: an initial period prior to the announcement of the future tariff change (period 0), a second period when the future tariff change is announced (period 1), and a final period when the new tariff rate is imposed permanently (period 2). The model only addresses the possibility of stockpiling the subject imports, not non-subject imports or the domestic good. Consumers have CES preferences for foreign and domestic products, and there is perfect competition in the product market within each period. There is also a user-specified period 2 demand shift shock in the model. The user inputs initial expenditures on the foreign and domestic products in the initial period, the initial and new tariff rate, elasticity parameters, time cost of money, and ad valorem storage costs. The user can modify data inputs in the simulation by changing the values in the ORANGE - shaded lines in the notebook below. The spreadsheet will update the estimated changes in economic outcomes that are reported in the GREEN - shaded cells once the user selects "Evaluate Notebook" under "Evaluation" in the Menu above. This model is provided as a generic analytical tool, and the data and parameter values are fictional and illustrative. Actual data and parameter values should be supplied by the user based on the industry and market to which the model is applied. The model is the result of ongoing professional research of USITC staff and may be updated. The model is not meant to represent in any way the view of the U.S. International Trade Commission or any of its individual Commissioners. The model is posted to promote the active exchange of ideas between USITC staff and experts outside the USITC and to provide useful economic modeling tools to the public. In[1]:= ClearAll[f]; Inputs Elasticity of Substitution In[2]:= sigma=4; Total Price Elasticity of Demand for the Sector In[3]:= eta=-1; Supply Elasticity of Domestic Shipments In[4]:= ed=2; Supply Elasticity of Subject Imports In[5]:= es=5; Supply Elasticity of Non-Subject Imports In[6]:= en=5; Initial Ad Valorem Tariff on Subject Imports in Periods 0 and 1 In[7]:= ts0=0; New Ad Valorem Tariff in Period 2 In[8]:= ts2=0.25; Expenditures In[9]:= vdomestic=50; In[10]:= vsubject=25; In[11]:= vnonsubject=25; Ad Valorem Carrying (or Storage) Costs In[12]:= cc=0.05; Interest Rate In[13]:= r=0.05; Anticipated Exogenous Rate of Growth in Market Demand between Period 1 and Period 2 (could be positive or negative) In[14]:= gr=-0.10; Hidden Sections Calibration Based on Data for the Initial Period In[15]:= vd0 = vdomestic/vdomestic; In[16]:= vs0 = vsubject/vdomestic; In[17]:= vn0 = vnonsubject/vdomestic; Prices In[18]:= pd0=1; In[19]:= ps0=1; In[20]:= pn0=1; Quantities In[21]:= qd0=vd0/pd0; In[22]:= qs0=vs0/(ps0 (1+ts0)); In[23]:= qn0=vn0/pn0 ; In[24]:= ad=qd0 pd0^-ed; In[25]:= as=qs0 ps0^-es; In[26]:= an=qn0 pn0^-en; In[27]:= bs = (vs0 (ps0/pd0)^(1-sigma))/vd0; In[28]:= bn = (vn0 (pn0/pd0)^(1-sigma))/vd0; In[29]:= P0=(pd0^(1-sigma)+bs (ps0(1+ts0))^(1-sigma)+bn pn0^(1-sigma))^(1/(1-sigma)); In[30]:= k = qd0 P0^(-sigma-eta) pd0^sigma; In[31]:= k2=k (1+gr); Scenario NNY (stockpiling S only) Period 2 with new tariff In[32]:= P2=(pd2^(1-sigma)+bs (ps2 (1+ts2))^(1-sigma)+bn (pn2 )^(1-sigma))^(1/(1-sigma)); In[33]:= EqnD2=ad pd2^ed==(k2 P2^(sigma+eta))/pd2^sigma; In[34]:= EqnS2=as ps2^es+zs==(bs k2 P2^(sigma+eta))/(ps2 (1+ts2))^sigma; In[35]:= EqnN2=an pn2^en==(bn k2 P2^(sigma+eta))/(pn2 )^sigma; Period 1 In[36]:= P1=(pd1^(1-sigma)+bs (ps1 (1+ts0))^(1-sigma)+bn pn1^(1-sigma))^(1/(1-sigma)); In[37]:= EqnD1=ad pd1^ed==(k P1^(sigma+eta))/pd1^sigma; In[38]:= EqnS1=as ps1^es-zs==(bs k P1^(sigma+eta))/(ps1 (1+ts0))^sigma; In[39]:= EqnN1=an pn1^en==(bn k P1^(sigma+eta))/pn1^sigma; Arbitrage condition that the expected return to period 1 production is the same with immediate sale or stockpiled until period 2 In[40]:= EqnArbS=ps1==(ps2 (1+ts2) (1-cc))/(1+r); Solve In[41]:= FindRoot[{EqnD1,EqnS1,EqnN1,EqnD2,EqnS2,EqnN2,EqnArbS},{pd1,pd0},{ps1,ps0},{pn1,pn0},{pd2,pd0},{ps2,ps0},{pn2,pn0},{zs,0}] Out[41]= {pd1->1.00134,ps1->1.00722,pn1->1.00089,pd2->0.991178,ps2->0.890592,pn2->0.99411,zs->0.0285583} Assign In[42]:= pd1nny=pd1/.%; In[43]:= ps1nny=ps1/.%%; In[44]:= pn1nny=pn1/.%%%; In[45]:= pd2nny=pd2/.%%%%; In[46]:= ps2nny=ps2/.%%%%%; In[47]:= pn2nny=pn2/.%%%%%%; In[48]:= zsnny=zs/.%%%%%%% Out[48]= 0.0285583 In[49]:= qd1nny=ad pd1nny^ed Out[49]= 1.00269 In[50]:= qs1nny=as ps1nny^es Out[50]= 0.518305 In[51]:= qn1nny=an pn1nny^en Out[51]= 0.50224 In[52]:= qd2nny=ad pd2nny^ed Out[52]= 0.982433 In[53]:= qs2nny=as ps2nny^es Out[53]= 0.280133 In[54]:= qn2nny=an pn2nny^en Out[54]= 0.485447 Indicator for whether this scenario applies In[55]:= ScenarioNNY=If[zsnny>0 ,1,0] Out[55]= 1 Scenario NNN (no stockpiling from any source) Period 2 with new tariff In[56]:= P2=(pd2^(1-sigma)+bs (ps2 (1+ts2))^(1-sigma)+bn (pn2 )^(1-sigma))^(1/(1-sigma)); In[57]:= EqnD2=ad pd2^ed==(k2 P2^(sigma+eta))/pd2^sigma; In[58]:= EqnS2=as ps2^es==(bs k2 P2^(sigma+eta))/(ps2 (1+ts2))^sigma; In[59]:= EqnN2=an pn2^en==(bn k2 P2^(sigma+eta))/(pn2 )^sigma; Period 1 In[60]:= P1=(pd1^(1-sigma)+bs (ps1 (1+ts0))^(1-sigma)+bn pn1^(1-sigma))^(1/(1-sigma)); In[61]:= EqnD1=ad pd1^ed==(k P1^(sigma+eta))/pd1^sigma; In[62]:= EqnS1=as ps1^es==(bs k P1^(sigma+eta))/(ps1 (1+ts0))^sigma; In[63]:= EqnN1=an pn1^en==(bn k P1^(sigma+eta))/pn1^sigma; Solve In[64]:= FindRoot[{EqnD1,EqnS1,EqnN1,EqnD2,EqnS2,EqnN2},{pd1,pd0},{ps1,ps0},{pn1,pn0},{pd2,pd0},{ps2,ps0},{pn2,pn0}] Out[64]= {pd1->1.,ps1->1.,pn1->1.,pd2->0.992928,ps2->0.90131,pn2->0.99528} Assign In[65]:= pd1nnn=pd1/.%; In[66]:= ps1nnn=ps1/.%%; In[67]:= pn1nnn=pn1/.%%%; In[68]:= pd2nnn=pd2/.%%%%; In[69]:= ps2nnn=ps2/.%%%%%; In[70]:= pn2nnn=pn2/.%%%%%%; In[71]:= qd1nnn=ad pd1nnn^ed Out[71]= 1. In[72]:= qs1nnn=as ps1nnn^es Out[72]= 0.5 In[73]:= qn1nnn=an pn1nnn^en Out[73]= 0.5 In[74]:= qd2nnn=ad pd2nnn^ed Out[74]= 0.985906 In[75]:= qs2nnn=as ps2nnn^es Out[75]= 0.297399 In[76]:= qn2nnn=an pn2nnn^en Out[76]= 0.48831 Assign the Relevant Scenario In[77]:= Fraction=ScenarioNNY *( zsnny*100)/qs1nny+(1-ScenarioNNY )*0; In[78]:= pd1hat=ScenarioNNY*((pd1nny-pd0) 100)/pd0+(1-ScenarioNNY )*((pd1nnn-pd0) 100)/pd0; In[79]:= ps1hat=ScenarioNNY*((ps1nny-ps0) 100)/ps0+(1-ScenarioNNY )*((ps1nnn-ps0) 100)/ps0; In[80]:= pn1hat=ScenarioNNY*((pn1nny-pn0) 100)/pn0+(1-ScenarioNNY )*((pn1nnn-pn0) 100)/pn0; In[81]:= qd1hat=ScenarioNNY*((qd1nny-qd0) 100)/qd0+(1-ScenarioNNY )*((qd1nnn-qd0) 100)/qd0; In[82]:= qs1hat=ScenarioNNY*((qs1nny-qs0) 100)/qs0+(1-ScenarioNNY )*((qs1nnn-qs0) 100)/qs0; In[83]:= qn1hat=ScenarioNNY*((qn1nny-qn0) 100)/qn0+(1-ScenarioNNY )*((qn1nnn-qn0) 100)/qn0; In[84]:= pd2hat=ScenarioNNY*((pd2nny-pd1nny) 100)/pd1nny+(1-ScenarioNNY )*((pd2nnn-pd1nnn) 100)/pd1nnn; In[85]:= ps2hat=ScenarioNNY*((ps2nny-ps1nny) 100)/ps1nny+(1-ScenarioNNY )*((ps2nnn-ps1nnn) 100)/ps1nnn; In[86]:= pn2hat=ScenarioNNY*((pn2nny-pn1nny) 100)/pn1nny+(1-ScenarioNNY )*((pn2nnn-pn1nnn) 100)/pn1nnn; In[87]:= cps2hat=ScenarioNNY*((ps2nny*(1+ts2)-ps1nny*(1+ts0)) 100)/(ps1nny*(1+ts0))+(1-ScenarioNNY )*((ps2nnn*(1+ts2)-ps1nnn*(1+ts0)) 100)/(ps1nnn*(1+ts0)); In[88]:= qd2hat=ScenarioNNY*((qd2nny-qd1nny) 100)/qd1nny+(1-ScenarioNNY )*((qd2nnn-qd1nnn) 100)/qd1nnn; In[89]:= qs2hat=ScenarioNNY*((qs2nny-qs1nny) 100)/qs1nny+(1-ScenarioNNY )*((qs2nnn-qs1nnn) 100)/qs1nnn; In[90]:= qn2hat=ScenarioNNY*((qn2nny-qn1nny) 100)/qn1nny+(1-ScenarioNNY )*((qn2nnn-qn1nnn) 100)/qn1nnn; Summary of Economic Effects Fraction of subject imports produced in period 1 that are stockpiled until period 2 (%) In[91]:= Fraction Out[91]= 5.50994 price of domestic shipments (% Change) In[92]:= pd1hat Out[92]= 0.134162 producer price of subject imports (% Change) In[93]:= ps1hat Out[93]= 0.721702 producer price of non-subject imports (% Change) In[94]:= pn1hat Out[94]= 0.0894216 quantity of domestic shipments (% Change) In[95]:= qd1hat Out[95]= 0.268505 quantity of subject imports (% Change) In[96]:= qs1hat Out[96]= 3.66097 quantity of non-subject imports (% Change) In[97]:= qn1hat Out[97]= 0.447908 Effects in period 2 with stockpiling price of domestic shipments (% Change) In[98]:= pd2hat Out[98]= -1.01504 producer price of subject imports (% Change) In[99]:= ps2hat Out[99]= -11.5789 consumer price of subject imports (% Change) In[100]:= cps2hat Out[100]= 10.5263 producer price of non-subject imports (% Change) In[101]:= pn2hat Out[101]= -0.677844 quantity of domestic shipments (% Change) In[102]:= qd2hat Out[102]= -2.01978 quantity of subject imports In[103]:= qs2hat Out[103]= -45.9522 quantity of non-subject imports In[104]:= qn2hat Out[104]= -3.34358