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I. Introduction 

The surge of innovation in Information Technology (IT) is one of the great economic 

developments of the last two decades. This period also coincides with the unexpected resurgence 

of the United States IT sector, belying the gloomy predictions about the US IT industry popular 

in the late 1980s and early 1990s (e.g. Cantwell, 1992; Arrison and Harris, 1992).  In this paper, 

we argue that these two developments are closely related. 

We present evidence that the IT innovation process is increasingly software intensive:  

non-software IT patents are significantly more likely to cite software patents, even after 

controlling for the increase in the pool of citable software patents.  We also see substantial 

differences across IT sub-sectors in the degree to which innovation is software intensive.  We 

exploit these differences to sharpen our empirical analysis. 

If the innovation process in IT has indeed become more dependent on software 

competencies and skills, then firms better able to use software advances in their innovation 

process will benefit more than others. Indeed, we argue that the shift in software intensity of IT 

innovation has differentially benefited American firms over their Japanese counterparts.  Our 

results from a sizable unbalanced panel of the largest publicly traded IT firms in US and Japan 

for the period 1983-2004  show that US IT firms have started to outperform their Japanese 

counterparts, both as measured by productivity of their innovative activities, and as measured by 

the stock market valuation of their R&D.1   

The timing and the concentration of this improvement in relative performance appears to 

be systematically related to the software intensity of IT innovation.  We show that the relative 

strength of American firms tends to grow in the years after the rise in software intensity had 

become well established.  Furthermore, the relative improvement of the U.S. firms is greatest in 

the IT sub-sectors in which the software intensity of innovation is the highest.  Finally, much of 
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the measured difference in financial performance disappears when we separately control for the 

software intensity of IT innovation at the firm level.  

Why were U.S. firms better able to take advantage of the rising software intensity of IT 

innovation?  Bloom et al. (forthcoming) argue that superior American management allows U.S. 

multinationals to derive a greater productivity boost out of a given level of IT investment than 

their European rivals.  In the context of our study, we find evidence that the openness of 

America's labor market to foreign software engineers may have played a key role in alleviating 

for American firms what was likely to have been a global shortage of skilled software engineers 

during the 1990s.  When Japanese firms undertake R&D and product development in the U.S., it 

appears to be much more software intensive than similar activity undertaken in Japan.  These 

results highlight the importance of local factor market conditions in shaping the geography of 

innovation.   

This paper is structured as follows. Section II documents the existence of a shift in the 

technological trajectory of IT, Section III empirically explores its implications for innovation 

performance of US and Japanese IT firms, and Section IV discusses the possible explanations for 

the trends we observe in our data. We conclude in Section V with a summary of the key results 

and suggestions for future work.  

II. The Changing Technology of Technological Change in IT 

 A survey of the computer and software engineering literature points to an evident 

increase in the role of software for successful innovation and product development in the IT 

industry.  The share of software costs in product design has increased steadily over time (Allan et 

al, 2002) and software engineers have become more important as high-level decision-makers at 

the system design level in telecommunications, semiconductors, hardware, and specialized 
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industrial machinery (Graff, Lormans, and Toetenel, 2003). Graff, Lormans, and Toetenel (2003) 

further argue that software will increase in importance in a wide range of products, such as 

mobile telephones, DVD players, cars, airplanes, and medical systems.  Industry observers claim 

that software development and integration of software applications has become a key 

differentiating factor in the mobile phone and PDA industry (Express Computer, 2002).  A 

venture capital report by Burnham (2007) forcefully argues that that the central value proposition 

in the computer business has shifted from hardware to systems and application software. 

 Similarly, De Micheli and Gupta (1997) assert that hardware design is increasingly 

similar to software design, so that the design of hardware products requires extensive software 

expertise. Gore (1998) argues that peripherals are marked by the increasing emphasis on the 

software component of the solution, bringing together hardware and software into an integrated 

environment.2  Kojima and Kojima (2007) suggest that Japanese hardware manufacturers will 

face increasing challenges due to the rising importance of embedded software in IT hardware 

products.  In sum, there is broad agreement among engineering practitioners and technologists 

that software has become more important in IT. In the next section, we validate this assertion 

formally, using data on citation patterns of IT patents. 

Measuring the Shift in the Technology of Technological Change in IT  

Approach 

If innovation in IT truly has come to rely more heavily on software, then we should 

observe that more recent cohorts of IT patents cite software technologies with increasing 

intensity, and this should be the case even when we control for the changes over time in the 

volume of IT and software patenting.  We therefore use citations by non-software IT patents to 

software patents as a measure of the software intensity of IT innovation.   
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Patents have been used as a measure of innovation in mainstream economic research at 

least since the early 1960s. Though subject to a variety of limitations, patent citations are 

frequently used to measure knowledge flows (Jaffe and Trajtenberg, 2002).  Following Caballero 

and Jaffe (1993) and Jaffe and Trajtenberg (1996, 2002), we use a citation function model in 

which we model the probability that a particular patent, p, applied for in year t, will cite a 

particular patent, P, granted in year T. This probability is determined by the combination of an 

exponential process by which knowledge diffuses and a second exponential process by which 

knowledge becomes superseded by subsequent research (Jaffe and Trajtenberg, 2002). The 

probability, Pr(p,P), is a function of the attributes of the citing patent p and the the cited patent P, 

(p, P), and the time lag between them (t-T), as depicted below: 

))(exp(1()(exp(),(),Pr( 21 TtTtPpPp             (1) 

We sort all potentially citing patents and all potentially cited patents into cells 

corresponding to the attributes of patents.  The attributes of the citing patents comprise the citing 

patent’s grant year, its geographic location, and its technological field (IT, software). The 

attributes of the cited patents are the cited patent’s grant year, its geographic location, and its 

technological field. Thus, the expected number of citations from a particular group of citing 

patents to a particular group of cited patents can be expressed as the following: 

))(exp(1()(exp()( 21 TtTtnncE abcdefdefabcabcdef            (2) 

where the dependent variable measures the number of citations made by patents with grant year 

(a), geographic location (b), and technological field (c) to patents with grant year (d), geographic 

location (e), and technological field (f). The alpha terms are multiplicative effects estimated 

relative to a benchmark or “base” group of citing and cited patents, and nabc and ndef. is the 

number of patents in the respective categories. Rewriting equation (2) gives us the Jaffe – 
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Trajtenberg (2002) version of the citation function, expressing the average number of citations 

from one category patent to another:  

))(exp(1()(exp(
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abcdef
abcdef 


          (3) 

Adding an error term, we can estimate this equation using the nonlinear least squares estimator. 

The estimated equation thus becomes the following: 

abcdeffedcbaabcdef TtTtcp   ))(exp(1()(exp()( 21  (4) 

In estimating equation (4) we adjust for heteroskedasticity by weighting the observations 

by the square root of the product of potentially cited patents and potentially citing patents 

corresponding to the cell, that is 

   )()( defabc nnw                      (5) 

Data 

We use patents granted by the United States Patent and Trademark Office (USPTO) 

between 1983 and 2004. We use the geographic location of the first inventor to determine the 

“nationality” of the patent. We identify IT patents, broadly defined, using a classification system 

based on USPTO classes, developed by Hall, Jaffe, and Trajtenberg (2001). They classified each 

patent into 36 technological subcategories. We applied their system and identified IT patents as 

those belonging to any of the following categories: computers & communications, electrical 

devices, or semiconductor devices. We obtained these data from the most recent version of the 

NBER patent dataset, which covers patents granted through the end of 2006. 

Next, we identified software related patents, which is a challenge in itself. There have 

been three significant efforts to define software patents. Graham and Mowery (2003) defined 

software patents as an intersection of those falling within a narrow range of International Patent 
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Classification (IPC) classes and those belonging to packaged software firms. This created a 

sample that omitted large numbers of software patents, according to Allison et al, (2006).  

The second effort was that of Bessen and Hunt (2007), who defined a software invention 

as one in which the data processing algorithms are carried out by code either stored on a 

magnetic storage medium or embedded in chips. They rejected the use of official patent 

classification systems, and used a keyword search method instead. They identified a small set of 

patents that adhered to their definition, and then used a machine learning algorithm to identify 

similar patents in the patent population, using a series of keywords in the patent title and abstract. 

Recently, Arora et al. (2007) used a similar approach that connects the Graham-Mowery and 

Bessen-Hunt definitions.3  

We used a combination of broad keyword-based and patent class strategies to identify 

software patents. First, we generated a set of patents, granted after January 1st 1983 and before 

December 31st 2004 that used the words “software” or “computer program” in the patent 

document. Then, we defined the population of software patents as the intersection of the set of 

patents the query returned and IT patents broadly defined as described above, granted in the 

period 1980-2006. This produced a dataset consisting of 106,379 patents.  

 These data are potentially affected by a number of biases.  Not all inventions are 

patented, and special issues are raised by changes in the patentability of software over the course 

of our sample period – making it all the more important to control for the expansion in the pool 

of software patents over time, as we do.  We also rely on patents generated by a single authority 

– the USPTO – to measure invention for both U.S. and Japanese firms.  However, Japanese firms 

have historically been among the most enthusiastic foreign users of the U.S. patent system.  

Evidence suggests that the U.S. patents of Japanese firms are a reasonably accurate proxy of 
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their inventive activity (Branstetter, 2001; Nagaoka, 2007).  This is particularly true in IT, given 

the importance of the U.S. market in the various components of the global IT industry. 

Results 

Figure 1 shows trends over time in the fraction of total (non-software) IT patents’ 

citations going to software patents.  While the trends for both Japanese and U.S. firms rise 

significantly over the 1990s, then level off a bit in the 2000s, the measured gap between Japanese 

and U.S. firms rises substantially over the period.  A one-tailed t-test reveals that these 

differences are statistically significant at conventional levels for every year of interest.  However, 

this analysis does not take into account a variety of other factors, thus we turn next to parametric 

analysis. 

 

Figure 1:  Software Intensity of Non-Software IT Patents, Fraction of IT Patent Citations 

Made to Software Patents 
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The unit of analysis in Table I is an ordered pair of citing and cited patent classes.  Our 

regression model is multiplicative, so a coefficient of 1 indicates no change relative to the base 

category.  Our coefficients are reported as deviations from 1.  The software patent dummy is 

large, positive, statistically significant, and indicates that IT patents in the 1990s are 9.42 times 

more likely to cite software patents than prior IT patents, controlling for the sizes of available IT 

and software patent pools. The second specification in Table I includes only software patents in 

the population of possibly cited patents. The coefficients on the citing grant years show a sharp 

increase in citation probabilities from 1991 to 2003. An IT patent granted in 1996 is 1.85 times 

more likely to cite a software patent than an IT patent granted in 1990. Furthermore, an IT patent 

granted in 2003 is almost 3.2 times more likely to cite a software patent than that granted in 

1990. Comparing this trend to that of the specification in the left-hand column of Table I, we see 

that this trend is much more pronounced, suggesting that software patents are becoming 

increasingly important for IT innovation. In Table I, we also explore citation differences between 

Japanese and non-Japanese invented IT inventions. The specification in the left-hand column 

indicates that Japanese invented IT patents are 31 percent less likely to cite other IT patents than 

non-Japanese IT patents. However, they are also much less likely to cite software patents than 

non-Japanese IT patents. This result is corroborated by the regression in the right-hand column, 

where the coefficient on the Japanese dummy again shows that Japanese invented IT patents are 

significantly less likely to cite software patents than non-Japanese patents.   

The citation function results were subjected to a number of robustness checks.  

Concerned that our results might be driven by large numbers of U.S.-invented software patents 

appearing in the more recent years of our sample, we estimated the propensity of U.S. IT patents 

to cite software patents generated outside the U.S. and found a rise in this propensity 
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qualitatively similar to that depicted in Table 1.  We also directly controlled for the 

disproportionately high likelihood that patents cite patents from the same country, but our result 

that Japanese IT hardware patents are systematically less likely to cite software over time was 

robust to this.  Finally, concerned that this result might be observed at least partially due to 

traditionally stronger university-industry ties in the United States4, we also estimated a version of 

the citations function in which we excluded all university-assigned patents and those citing them, 

and found our results to be robust to this as well. 

 The U.S. Bureau of Labor Statistics data on U.S. employment by occupation and industry 

from 1999-20075 reveal trends consistent with a rising importance of software in IT innovation.  

For instance, Figure 2 illustrates how two measures of the share of software engineers in total 

employment in the computer and peripheral equipment manufacturing industry have trended 

upward over time.  We see similar trends in other IT subsectors as well. The share is highest in 

computers and peripherals, lowest in audio and visual equipment manufacturing, and at 

intermediate levels in semiconductors.  Interestingly, the relative share of software engineers in 

total employment across subsectors appears to accord with patent citation-based measures of 

software intensity. 
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Figure 2:  Trends in Software Engineering Employment 

 
Source: Bureau of Labor Statistics, Occupational Employment Survey, 1999-2007 

Note: Data include domestically employed H1-B Visa holders 

 

III. Comparing US and Japanese Firm-Level Innovation Performance in IT 

Our citation function results suggest that there has been a shift in the nature of technical 

change within IT – invention has become much more software intensive.  Our results also 

suggest that U.S. firms have more actively incorporated software into their inventive activity 

than have Japanese firms.  If this is true, then it is reasonable to expect that changes in the 

relative performance of Japanese and American firms may be related to the software intensity of 

the industry segments in which they operate.  In segments of IT where innovation has become 

most reliant on software, we should expect to see American firms improve their relative 

innovation performance relative to Japanese firms.  In segments of IT where innovation does not 

draw heavily on software, we would expect less of an American resurgence.  As we shall see, 

two very different measures of relative performance show exactly this pattern.   
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We use two of the most commonly employed empirical approaches to compare firm-level 

innovation performance of US and Japanese IT firms: the innovation (patent) production 

function and the market valuation of R&D. While the former approach relates R&D investments 

to patent counts and allows us to study the patent productivity of R&D, the second approach 

relates R&D investment to the market value of the firm and explores the impact of R&D on the 

value of the firm (Tobin’s Q).  

Patent Production Function 

This approach builds on Pakes and Griliches (1984) and Hausman, Hall, and Griliches 

(1984).  We use a log-log form of the patent production function.  

      iJP
ititit erP               (6)      

where      c ccD

it e
                           (7) 

In equation (6), Pit are patents taken out by firm i in period t, rit are research and development 

expenditures, JPi indicates if the firm is Japanese, and Ф’s represent innovation-sector-specific 

technological opportunity and patenting propensity differences D across c different innovation 

sectors as specified in (7). Substituting (7) into (6), taking logs of both sides, and expressing the 

sample analog we obtain the following: 

    itic ccitit JPDrp                (8) 

where pit is the natural log of new patents (flow) and the error term which is defined below.  

     itiit u                 (9) 

We allow the error term in (9) to contain a firm-specific component, ξi, which accounts for 

the intra-industry firm-specific unobserved heterogeneity, and an iid random disturbance, uit. The 

presence of the firm-specific error component suggests using random or fixed effect estimators. 
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Since the fixed effects estimator precludes time-invariant regressors, including the firm origin 

indicator, we feature the pooled OLS and random effects estimators, and use the fixed effects 

estimator as a robustness check.  

Private Returns to R&D and Tobin’s Q 

 Griliches (1981) pioneered the use of Tobin q regressions to measure the impact of R&D 

on a firm’s economic performance (see Hall (2000) for a detailed review). We can represent the 

market value V of firm i at time t as a function of its assets: 

                                                         ),( ititit KAfV                                                                   (10) 

where Ait is the replacement cost of the firm’s tangible assets, typically measured by their book 

value, and Kit is the replacement value of the firm’s technological knowledge, typically measured 

by stocks of R&D expenditures6. We follow the literature, which assumes that the different 

assets enter into the equation additively: 

                                                      )*( itittit KAqV                                                           (11) 

where qt is the average market valuation coefficient of the firm’s total assets, β is the shadow 

value of the firm’s technological knowledge measuring the firm’s private returns to R&D, and σ 

is a factor measuring returns to scale. Again, following standard practice in the literature (e.g. 

Hall and Oriani, 2006), we assume constant returns to scale (σ = 1). Then, by taking natural logs 

on both sides of (11) and subtracting ln Ait, we obtain the following expression that relates a 

firm’s technological knowledge to its value above and beyond the replacement cost of its assets, 

Tobin’s Q: 
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Following Hall and Kim (2000) and others, we estimate a version of (12) using the nonlinear 

least squares estimator, with time dummies and a firm origin indicator. We were unable to 

estimate a specification with firm-fixed effects because the NLS algorithms did not converge.  

As a robustness check, we estimated a linearized version of (12) with fixed effects. 

Data and Variables 

Sample 

Our sample consists of large publicly traded IT companies in the United States and Japan, 

observed from 1983 to 2004.7 We obtained the sample of US firms from historical lists of 

constituents of Standard & Poor’s (S&P) US 500 and S&P 400 indices. The resulting set of firms 

was refined using Standard & Poor’s Global Industry Classification Standard (GICS) 

classification8 so that only firms appearing in “electronics”, “semiconductors”, “IT hardware” 

and “IT software and services” categories remained in the sample. This initial set of 

approximately 290 firms was narrowed further as follows: (a) only firms with least 10 patents in 

between 1983-2004 were retained, (b) US firms in “IT software and services” were removed to 

achieve compatibility,9 and (c) only firms for which at least 3 consecutive years of R&D 

investment and sales data were available were kept in the sample. This yielded an unbalanced 

panel of 133 US IT firms. 

The initial sample of 154 large publicly traded Japanese IT firms derived from the 

Development Bank of Japan (DBJ) database10 was supplemented by an additional 34 firms  

included in Standard & Poor’s Japan 500 index as of January 1st 200311 that belong to either 

“electronics”, “semiconductors”, “IT hardware”, or “IT software and services”. 

We winnowed the sample by (a) dropping all firms without at least 10 patents in the 

observed period, (b) dropping Nippon Telephone and Telegraph, and most significantly, (c) all 
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firms for which at least three consecutive years of R&D investment and positive output data 

were not available. This produced a final sample of 77 Japanese IT firms. 

Collectively, the Japanese and U.S. firms in our sample accounted for over 70% of total 

U.S. IT patenting by Japanese and U.S. firms, respectively, in the late 1990s and early 2000s, 

confirming that we are capturing a large majority of private sector innovative activity in this 

domain.12  

Locating Firms in Software Intensity Space 

To explore how innovation performance differentials between US and Japanese firms 

vary with software intensity, we classify firms into industry segments.  GICS provided us with a 

classification of US firms in our sample into four sectors – “electronics”, “semiconductors”, “IT 

hardware”, and “IT software and services”.  Japanese firms were classified manually using the 

two-digit GSIC classification data from the S&P Japan 500 along with data from Japan’s 

Standard Industrial Classification (JSIC), supplemented by data from Google Finance, Yahoo! 

Finance and corporate websites. 

We construct two separate measures of software intensity, both of which suggest a 

similar ranking of IT subsectors.  First, we use the shares of software patents in total patents 

taken out by the firms, averaged across firms in an industry category.  Second, we calculate the 

fraction of citations to software patents by non-software IT patents, averaged across firms in a 

sample category. Table II presents summary statistics for both these measures of software 

intensity.  As expected, electronics is the least software intensive, followed by semiconductors 

and IT hardware. A two-sided test for the equality of means rejects that the intensities are the 

same in any pair of sectors when we use the share of software patents as our measure. The 

second measure, citations to software patents, yields similar results, albeit at lower levels of 
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significance in some cases.  Tables III and III-2 calculate the industry averages of our measures 

of software intensity separately for U.S. and Japanese firms.  In general, the ranking of industries 

in terms of software intensity suggested by the overall sample apply to the country-specific 

subsamples as well.13 Japanese firms are disproportionately located in less software intensive 

sectors, and within those sectors, are less software intensive than their US counterparts.  

Taking the assignment of firms to the different IT industries as given14, we test whether 

US firms outperform Japanese firms, and whether this performance gap is more marked in IT 

industries that are more software intensive.  

Construction of Variables  

Patent Counts: Patent data for our sample of firms were collected from the updated 

NBER patent dataset containing patents granted by the end of 2006. Compustat firm identifiers 

were matched with assignee codes based on the matching as constructed and available on the 

NBER’s Patent Data Project website.15 The matching algorithm for Japanese firms was based on 

a Tokyo Stock Exchange (TSE) code - assignee code concordance previously used in Branstetter 

(2001), but was manually updated by matching strings of firm names and strings of assignee 

names as reported by the USPTO. 

R&D Investment: Annual R&D expenditure data for US firms were collected from 

Compustat, and a set of self-reported R&D expenditure data for Japanese firms were collected 

from annual volumes of the Kaisha Shiki Ho survey.16 We deflated R&D expenditures following 

Griliches (1984), and constructed a separate R&D deflator for US and Japanese firms that weigh 

the output price deflator for nonfinancial corporations at 0.51 and the unit compensation index 

for the same sector at 0.49. Using data on wage price indexes for service-providing and goods-

producing employees,17 we constructed a single unit compensation index for each country, and 
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then applied the proposed weights and appropriate producer price indexes to compute the R&D 

deflators and deflate the R&D expenditure flows. 

R&D stocks: We calculated R&D capital stocks from R&D expenditure flows using the 

perpetual inventory method, with a 15% depreciation rate.18 We used 5 pre-sample years of R&D 

expenditures to calculate the initial stocks.19  

Market Value of the Firm: Market value of a firm equals the sum of market value of its 

equity and market value of its debt (Perfect and Wiles, 1994). Market value of equity equals the 

sum of the value of outstanding common stock and the value of outstanding preferred stock. The 

value of outstanding common (preferred) stock equals the number of outstanding common 

(preferred) shares multiplied by their price. For US firms, we used year-close prices, year-close 

outstanding share numbers, and year-close liquidating values of preferred capital. For Japanese 

firms, the only available share price data were year-low and year-high prices, and we used the 

arithmetic mean of the two to obtain share price for each firm-year combination. In addition, 

preferred capital data was not available for Japanese firms, which should not create problems as 

long as preferred capital does not systematically vary with time and across technology sectors. 

For market value of debt we used total long-term debt and debt in current liabilities. For 

Japanese firms, we used fixed liabilities as a proxy for the value of long-term debt and short-term 

borrowings as a proxy for the value of short-term debt.20 

Replacement Cost of Assets: The replacement cost of the firm’s assets is the deflated 

year-end book values of total assets21 where the deflator is a country-specific capital goods 

deflator obtained from the Bureau of Labor Statistics and the Statistics Bureau of Japan, 

respectively. 
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Patent Production Function Results 

Figure 3 compares the number of patents per firm for the US and Japanese firms in our sample. 

We observe that Japanese firms obtain more non-software IT patents than their US counterparts. 

Between 1983 and 1988, the average number of non-software IT patent applications were almost 

identical for Japanese and US firms. Between 1988 and 1993, patent applications by Japanese 

firms outpaced those of US firms, after which both grew at a similar pace. By contrast, Japanese 

firms file fewer software patents than their US counterparts, and the difference has grown 

steadily since the late 1980s, and especially after the mid 1990s. 

 

Figure 3: Average Number of non-software IT and Software Patents per Firm 

 

 

Table V reports the estimates of the patent production functions of U.S. and Japanese IT 

firms. Our first key result is presented in Figure 4 below, which plots the pooled OLS average 
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difference in log patent production per dollar of R&D, between Japanese and US firms in our 

sample through time, controlling for time and sector dummies. We see that R&D spending by 

Japanese firms was 70% more productive than that of their US counterparts during 1983-1988, 

but became less and less productive from 1989-1993 onwards. This trend accelerated in the 

1990s and early 2000s, with Japanese IT firms producing 20% fewer patents, controlling for the 

level of R&D spending, than their US counterparts in the period 2000-2004. 

 

Figure 4: Average Japan-US Productivity Differences, Entire Sample 

  
Based on results from Table V. Appendix A. Reported are pooled OLS estimation coefficients.    
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Figure 5: Average Japan-US Productivity Differences, By Software Intensity Sector 

 
Based on results from Table V. of Appendix A. Reported are selected pooled OLS estimation 

coefficients. 

 

Figure 5 reports Japan-U.S. differences in patent output controlling for R&D input by IT 

sector. In electronics, previously shown to be the least software intensive, and where average 

software intensity is similar between US and Japanese firms, Japanese firms have been less 

productive in patent production in the 1980s and early 1990s, but have been catching up to their 

US counterparts in the mid-to-late 1990s and early 2000s.22 On the other hand, in 

semiconductors and IT hardware, which have significantly higher software intensity than 

electronics, and where average software intensity of US firms is greater than of Japanese firms, 

Japanese firms exhibited higher productivity in the mid 1980s, started losing their advantage by 

the turn of the 1990s, and started to lag behind their US counterparts in the mid to end 1990s and 

early 2000s.23  

 Most of the results in Table V are statistically significant at the 5% level and become 

more statistically significant in more recent time periods. In addition, the results are robust to 
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changes estimation techniques and measures. Random effects and fixed effects estimates are 

similar, suggesting that our results are not driven by unobserved firm-specific research 

productivity or patent propensity differences.. The dependent variable in these estimations is the 

log of total patents applied for by firm i in year t. Unreported estimations show that the results 

are very similar if we use instead the log of IT patents, or the log of IT patents excluding 

software patents, or if we weight patents by subsequent citations or by the number of claims.  

Accounting for Alternative Hypotheses 

 The collapse of the Japanese bubble economy at the end of the 1980s.  The shift in relative 

performance parallels the slowdown in the Japanese domestic economy at the end of the 1980s.  

This domestic slowdown could have led to lower levels of R&D expenditure by Japanese firms.  

However, a simple recession induced decline in R&D investment cannot explain our results.  We 

are estimating the productivity of R&D in producing patents, rather than the number of patents 

produced. If Japanese firms sought cost savings by eliminating marginal R&D projects, 

measured productivity should be higher, not lower.  Budget pressures could have also led 

Japanese firms to change their patent propensity, filing fewer but higher quality patents outside 

Japan.  However, estimates using citation weighted patents yield results similar to those reported 

above.  More fundamentally, no simple story about a post-bubble slowdown in the domestic 

economy can explain the observed pattern, wherein the relative decline in productivity is greater 

in more software intensive segments. 

The appreciation of the yen after 1985.  The yen appreciated sharply in the mid-1980s and 

remained much stronger through the mid-to-late 1990s.24  These exchange rate shifts lowered the 

international competitiveness of Japan-based manufacturing. However, we do not think that 

exchange rate shifts are driving our results.  All the segments of the Japanese IT industry 
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confronted the same yen-dollar exchange rate, yet the relative innovative performance of the 

different segments varied in ways that are difficult to explain based on exchange rate 

considerations alone.  For example, the Japanese electronics sector is arguably the one most 

likely to be affected by an appreciating currency; electronics had a much larger “commodity” 

share in total output, as compared to semiconductors and hardware.  However, it is electronics in 

which Japan's relative performance strengthened the most. 

Strong venture capital in America, weak venture capital in Japan.  Kortum and Lerner (2001) 

provide evidence of the strong role played by venture capital backed firms in the acceleration of 

innovation in the United States in the 1990s.  Recent Japanese scholarship (Hamada, 1996, Goto, 

2000, Goto and Odagiri, 2003) stresses the relative weakness of venture capital in Japan as an 

impediment to the growth of science-based industries.  While it is certainly true that new firms 

adept at software-based innovation entered the market in the mid-to-late 1990s, often with 

backing from venture capitalists, our results do not depend on their inclusion in the sample.  For 

instance, we get similar results if we remove all U.S. firms that went public after the Netscape 

IPO, widely regarded as the start of the VC fuelled boom in the U.S. 

Strong university-industry linkages in the U.S., weak linkages in Japan. Goto (2000), Nagaoka 

(2007), and many others have suggested that weaker Japanese universities and weaker 

mechanisms for university-industry technology transfer impede growth in Japan’s science-based 

industries.  We acknowledge the importance of these linkages.  However, if university-generated 

inventions were an important element in the transformation of the U.S. IT sector, then corporate 

patents citing these university-generated inventions should be especially important in generating 

our empirical results.  We delete all university-owned inventions and all corporate patents citing 

university-owned inventions from our data; the results do not change.   
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Technology standards and market dominance.  Japanese scholars, such as Tanaka (2003), have 

suggested that the increasing dominance of U.S. IT firms since the 1990s is driven largely by 

U.S. ownership of key technology standards in the industry.  Though owning a major technology 

standard may be beneficial, we can delete from our sample all U.S firms that could plausibly be 

described as owners of a major IT technology standard without altering our results.  The most 

(in)famous standard owner, Microsoft, is never included in the sample: We do not include firms 

from the packaged software industry, because there are very few publicly traded Japanese firms 

in that segment. 25 If we were to include the packaged software firms such as Oracle and Google, 

the productivity differences would be even more favorable to the US. 

The same arguments may apply to the decline of one of Japan's important technology 

standards.  Throughout the 1980s, the Japanese firm NEC dominated the sales of personal 

computers in Japan.  NEC pioneered the development of a PC capable of handling Japan's 

complex written language.  The popularity of the NEC standard created a virtuous cycle in which 

Japanese software firms and game developers focused their efforts on NEC-compatible products, 

reinforcing NEC's market dominance.    In 1991, a consortium led by IBM Japan introduced 

DOS/V, an operating system that allowed IBM-compatible PCs to handle the Japanese language 

without any additional IT hardware.26   

The introduction of this software ended NEC's market dominance, and allowed a new group 

of firms to gain market share. The firm most obviously affected by DOS/V is NEC, and our 

results are robust to the exclusion of NEC.  Insofar as the introduction of DOS/V reduced R&D 

by other Japanese IT firms by shrinking their markets, this may be reflected in our Tobin's q 

results.  However, to the extent that this market compression induced firms to reduce R&D 
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spending, they should have cut the marginal projects first, suggesting, if anything, and increase 

in R&D productivity rather than the decrease that we see in the data.    

Results Based on Private Returns to R&D 

 We begin by plotting the average difference in Tobin’s Q between our sample of US and 

Japanese firms through time, shown in Figure 6 below. We observe that Japanese firms, on 

average, have had higher Q values than US firms in the mid 1980s and early 1990s. These 

differences diminished with the bursting of the Japanese economic bubble at the dawn of the 

1990s, and Japanese Q values have lagged throughout the 1990s, especially in semiconductors, 

and to a lesser extent, also in IT hardware, before recovering somewhat in the early 2000s with 

the bursting of the U.S. stock market bubble. Thus trends in average Tobin’s Q values generally 

parallel those in patent production.  

Moving beyond the descriptive analysis, we regress Tobin’s Q on the ratio of R&D 

stocks by total assets to estimate private returns to R&D (shadow value of R&D). Table IV 

reports estimates of equation (12) by period using nonlinear least squares.  It shows that the 

shadow price of R&D/Assets for US firms was close to zero and not statistically significant in 

most periods, but rose to positive and statistically significant levels by the mid-to-late 1990s. On 

the other hand, the coefficient on R&D/Assets for Japanese firms has not followed this trend. It 

has hovered just above zero in the 1980s but dropped significantly by the mid 1990s and early 

2000s. In these periods it was much lower than that of US firms, with the difference statistically 

significant at the 5% level. This is consistent with what we observed when plotting the values of 

Tobin’s Q through time, except that we do not observe much of a positive pullback for Japanese 

firms in the early and mid 2000s. 
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 Interestingly, this “reversal of fortune” for the market valuation of U.S. firm R&D 

appears to be sensitive to the inclusion of a direct measure of software intensity.  Table IV-2 

reports the results of a regression in which we add a variable representing firm-level software 

intensity, and also interact it with R&D/Assets. This additional regressor significantly alters our 

results.  The R&D/Assets coefficient for U.S. firms is lower than before, while the differences 

between US and Japanese firms disappear and, in some periods, reverse with the inclusion of an 

indicator of firm-level software intensity.  These results support the view that the relative 

increase in U.S. performance is related to software intensity.   

 

Figure 6: Average Difference in a Raw Measure of Tobin’s Q, By Sector 

 

Tobin’s Q as calculated in the database, averaged across sector. Calculated as US average 

subtracted from JP average. 

 

Figure 7 compares private returns to R&D for Japanese and US firms by IT sector. As 

with patent productivity, we find that results differ by sector. In electronics, the least software 

intensive sector, the Japanese firms started off with a small advantage in the 1980s, before 
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increasing it substantially by the mid 1990s. The reverse is true in IT hardware, the most 

software-intensive sector.  We report detailed regression results in Tables VII-VIII .27 

 

Figure 7: Average Difference in Private Returns to R&D, By Sector 

  

Shadow values of R&D as estimated by OLS/FE in Table VII. Calculated as US average 

subtracted from JP average. 

 

We conducted several robustness checks. We first estimated versions of (12) using NLS 

and FE estimators, where we directly estimated time trends for private returns to R&D separately 

for US and Japanese firms. Table VI shows that the direction of the trends remains unperturbed. 

Private returns to R&D for Japanese firms linger, as before, around 0, and show a slight negative 

trend over time, while private returns to R&D for US firms show a marked and statistically 

significant positive trend. In Tables VII-VIII, we report both estimates of the linear 

approximation using firm fixed effects and estimates obtained using nonlinear least squares. 

Again, we observe that the signs of the coefficients remain qualitatively unchanged.  

As in the previous section, we consider our results alongside alternative explanations.  

We estimated versions of (12) by excluding VC-backed entrants from our sample, and found 
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little qualitative change in our results. Similarly, we re-estimated our regressions by excluding 

firms who owned major technological standards during the sample period (as well as to the 

exclusion of NTT), and again found little change in our results.   

In order to directly test the robustness of our results to changes in industry group 

assignment of firms, we estimated a linearized version of the regression where we assigned firms 

in our sample into groups of the same sizes as those suggested by the industry classification, but 

based on both firm-level shares of software patents and firm-level shares of citations directed 

towards software patents. We found our results to be qualitatively robust to this exercise that 

allowed us to estimate the regressions without imposing possibly restrictive assumptions about 

firm industry assignments. Finally, we estimated a version where we split US and Japanese firms 

into quartiles according to the firm-level share of software patents in total patents. We observe 

that US firms’ private returns to R&D increase with software intensity, while they fall in the case 

of Japanese firms. Interestingly, we also observe that US firm’s private returns to R&D increase 

with the software intensity of the sector when they are also in the top quartile of software 

intensity. The same is true for Japanese firms. Conversely, private returns to R&D decrease with 

the software intensity of the sector for firms located in the bottom quartile of software intensity. 

Our paper is focused on innovation in the IT sector and the market returns to IT 

innovation in that sector, rather than IT production.  However, our findings are consistent with 

reported industry-level productivity trends.  Specifically, Jorgenson and Nomura's (2007: p 26, 

fig 9) show that in both computers and electronic components, an initially more productive 

Japanese industry is sharply overtaken by its U.S. counterpart in TFP over the course of the 

1990s.28 
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IV. Discussion 

This paper documents three facts. First, IT innovation has become more software 

intensive. Second, Japanese firms rely less on software knowledge in IT hardware invention than 

their US counterparts (and produce significantly fewer software inventions). Third, the 

innovation performance of Japanese IT firms is increasingly lagging behind, particularly in 

software intensive sectors. Together, they point to a link between the changing technology of 

technical change in IT and an inability of Japanese firms to respond adequately to the shift..29 

What prevented Japanese firms from using software advances as effectively as U.S. 

firms?  There are at least two explanations. The first is a resource constraint argument:  U.S.-

based firms have access to a much larger pool of software engineers than do their Japanese 

counterparts.  Japanese firms have not yet been able to overcome their national labor resource 

constraints by offshoring their software-intensive R&D.  The second explanation is one rooted in 

the failure of Japanese managers to understand and adequately respond to the changing nature of 

technological change in IT.   

Many studies have pointed out the persistent shortages of software engineers in Japan, 

dating back to the 1970s and 1980s.30  This longstanding weakness did not prevent Japanese 

firms from acquiring a strong market position in IT in the 1980s, but it may have become more 

important as IT hardware product development became steadily more software-intensive.31  The 

level of local human capital might not be a constraint if knowledge flowed freely across 

countries.  However, tapping into foreign knowledge pools can be difficult (Jaffe, Trajtenberg, 

and Henderson 1993), especially for Japanese firms.32 Belderbos (2001), Odagiri and Yasuda 

(1997), and Belderbost, Fukao, and Kwon (2006) document the relatively limited extent of 

Japanese R&D activity outside Japan during the period under consideration.  Japan’s relatively 
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restrictive immigration laws and its long history as an ethnically homogenous society mitigate 

against large-scale importation of skilled labor.33 

The available data make it difficult to precisely quantify the differences in software 

human resources between the U.S. and Japan, but the gap between the two is clearly large.  

Figure 8 presents data from several sources comparing the flows of new (potential) domestic IT 

workers during the crucial years from the mid-1990s through the early 2000s.34  .Due to 

differences in reporting conventions, we aggregate over IT software and hardware related 

disciplines to produce a count of total IT bachelors, masters, and Ph.D. level graduates for both 

countries.  We use data reported by Lowell (2000) and Kirkegaard (2005) to estimate the number 

of temporary workers joining the U.S. labor force in “computer-related fields” under the auspices 

of an H-1B visa.  In Figure 8, we assume that half of all foreign workers newly admitted to Japan 

as “researchers,” “engineers,” or “intracompany transferees” are employed as IT workers in 

Japan – a far larger fraction than plausibly holds true in reality. 35     
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Figure 8:  ICT Human Resources, U.S. vs. Japan 

(ICT graduates and H1-B immigrants into computer-related professions, 1995-2001) 

 

Arora, Branstetter, and Drev (2010) describe these data (and their shortcomings) in 

greater detail.36  Despite these caveats, the picture painted by Figure 8 is quite striking: the flow 

into the domestic IT labor pool grew much faster in the U.S. compared to Japan.  In 1995, the 

inflows into the domestic IT labor pool in the U.S. were about 68% greater than those in Japan.  

By 2001, the inflows in the U.S. were nearly three times bigger than those in Japan, with the 

difference being driven largely by H-1Bs.  In some of the latter years of the sample period, the 

U.S. was importing more IT specialists per year than it was graduating from all IT-related 

bachelors, masters, and doctoral programs combined.  Of course, firms are not confined to their 

domestic labor pool.  Accounting for the level of software offshoring in the U.S. and Japan is 

even harder, but the available data suggest that consideration of software offshoring would 

significantly increase the resource gap implied by Figure 8 (Arora, Branstetter, and Drev, 2010). 
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In other words, imports of workers and software offshoring may have been a critical 

source of advantage for U.S. based firms.  Relatively few of these imported experts may have 

been software architects of the highest order, capable of undertaking transformative innovation.  

However, creating, testing, and implementing software for IT innovation required both 

fundamental innovators and programmers undertaking more routine and standardized kinds of 

software engineering.  America’s ability to tap into an increasingly abundant (and increasingly 

foreign) supply of the latter may have raised the productivity of the former and enabled 

American firms to outpace their rivals. Arora, Branstetter, and Drev (2010) present a simple 

model in which a more abundant supply of software engineers capable of routine coding and 

testing raises the productivity of highly skilled software innovators, and show how it could imply 

results for the relative research productivity of Japanese and U.S. IT firms that are similar to 

those documented in this paper.   

An alternative hypothesis posits that Japan’s relative decline in innovative productivity 

was driven by the failure of Japanese IT managers to appreciate and respond to the rising 

importance of software in IT product development.  A stream of the recent management 

literature has focused on how managerial mindsets, formed through years of experience, affect 

the (in)ability of firms to make strategic shifts when firm environments change (Bettis and Hitt, 

1995).  In the economics literature, Nick Bloom, John Van Reenen, and their co-authors have 

shown that persistent performance differences across firms based in different countries could be 

driven by differences in management practices (e.g., Bloom, Sadun, and Van Reenen, 

forthcoming; Bloom and Van Reenen, 2010; Bloom and Van Reenen, 2007).   The papers also 

show that multinationals tend to bring their management practices, both good and bad, with them 

when they set up subsidiaries abroad.    
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Distinguishing Between Possible Hypotheses 

 These two possible explanations yield different predictions regarding what types of 

innovative activities Japanese firms should undertake in Japan and abroad. If they are 

constrained by their software human resources at home, then Japanese firms will have the 

incentive to tap into foreign knowledge and expertise by setting up software intensive R&D 

facilities abroad. On the other hand, if differences in relative performance are because Japanese 

managers downplay or ignore the importance of software, then the research output of Japanese 

overseas subsidiaries ought also to be less software intensive than their American counterparts. 

  Because Japanese and U.S. firms conduct IT R&D (and generate patents associated with 

that activity) at home and in the other country, we can submit these two hypotheses to a test.  

What we observe is consistent with the resource constraint hypothesis. The share of software 

patents in total patents invented in Japan by Japanese parent firms in our sample is 6%, as 

reported in Figure 9-1. However, the share of software patents in total patents invented in the US 

by Japanese firms is significantly higher – 24%. This surpasses even the share of software 

patents in total patents invented in the US by US-based IT firms, which is approximately 17%. 

This suggests Japanese firms are disproportionally likely to engage in software innovation 

abroad.  In addition, as shown in Figure 9-2, patents invented in the U.S. by the subsidiaries of 

Japanese firms are far more likely to cite software innovation than those invented in Japan -- and 

they are even more likely to cite software than the comparable patents of U.S.-based firms. As 

reported in Figures 9-3 and 9-4, these patterns hold when we focus on individual sectors – 

electronics, semiconductors, IT hardware - but are strongest in IT hardware.  It is almost as if 

Japanese firms are trying to work around the constraints in their home market by choosing a very 

software-intensive style of innovation in the U.S., where the resources exist to support it.   
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 Bloom et al. (forthcoming) present a compelling case that superior American firm 

management practices may be important in explaining why American firms deploy IT more 

effectively than their foreign rivals.  In this paper, we find evidence that human resource 

constraints may be important in explaining the success of American firms in creating new IT 

products.  In general, the role of international differences in access to human resources and the 

interaction of these differences with local management practices would appear to be an 

interesting and fruitful area for further research. 

 

V. Conclusions, Implications and Next Steps 

In this paper, we document the existence of a software-biased shift in the innovation 

process in information technology. Although widely acknowledged in the computer and software 

engineering literature, this shift has received very little prior attention from economists or 

management scholars.37  We provide evidence on the economic importance of this shift by 

studying how it affected the innovation performance of IT firms in the United States and Japan.  

We show that this shift has resulted in a deterioration of the relative innovation performance of 

Japanese firms, and we find that this effect is more pronounced in software intensive sectors. 

This pattern of relative deterioration and its concentration in software-intensive sectors is robust 

to controls for the different levels of development of venture capital and formal mechanisms for 

university-industry technology transfer in the two countries and to controls for disproportionately 

American ownership of key technology standards.  Our findings thus provide a largely new 

explanation for the precipitous global decline of one of Japan’s once leading industrial sectors – 

another development that has received relatively little attention from mainstream economists.  
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Finally, we provide evidence that suggests that a constrained supply of software 

knowledge and skills in Japan might explain the relatively weaker innovation performance of 

Japanese IT firms in the 1990s.  These findings are particularly interesting in light of a growing 

literature that explores linkages between factor endowments, technological change, and industry 

performance (e.g. Acemoglu, 2002; Dudley and Moenius, 2007), and may provide a useful 

complement to the growing literature that links the superior performance of American firms in 

some contexts to superior management practices (Bloom and Van Reenen, 2010).  
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Footnotes 

1These results parallel the findings of Jorgenson and Nomura (2007), who demonstrate that 

Japanese TFP rose rapidly for decades, converging to U.S. levels, but then began diverging from 

it around 1995.  Their industry level analysis suggests that a change in the relative performance 

of the IT-producing industries (which we study in this paper) and the IT-using industries were 

particularly important in driving the shift from convergence to divergence.  Jorgenson and 

Nomura do not attempt to explain the mechanisms behind divergence in productivity.  

2Personal discussions with Mark Kryder, former CTO of Seagate, confirmed that software has 

become an increasingly important driver of product functionality and product differentiation in 

the hard disk drive industry. 

3Allison et al. (2006) rejected the use of both the standard classification system and keyword 

searches, resorting to the identification of software patents by reading through them manually.  

Although potentially more accurate, this method is inherently subjective and not scalable.   

4See Goto (2000) and Nagaoka (2007) for a more detailed discussion. 

5Methodological changes in the survey make it difficult to track occupational employment in the 

U.S. IT industry in a consistent way over time, particularly in comparing the periods before and 

after 1999.   

6The construction of variables is explained in greater detail in subsequent sections. 

7We use the NBER Patent Database, which currently incorporates all patents granted through 

2006. Since our empirical specifications use patents dated by the date of application, and since 

can patents take more than two years to work their way through the USPTO evaluation process, 

we are currently unable to extend our data past 2004.   
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8GICS, the Global Industry Classification System, is constructed and managed by Moody’s in 

collaboration with Compustat.  

9NTT is the only Japanese firms in “IT services and software” in our sample. 

10We thank the Columbia Business School Center on the Japanese Economy and Business for 

these data.   

11January 1st, 2003 was the date of creation of this index. 

12Figuring out what fraction of total IT production is accounted for by our firms is harder, 

because of the far-reaching globalization of IT production by the late 1990s.  According to the 

OECD,  in 1999, the top 10 IT U.S. firms in our sample had global revenues greater than the 

entire amount of IT production in the U.S. in that year.  The picture is similar for our Japanese 

firms, who have also taken increasing advantage of opportunities to offshore production.   

13Depending on the measure, tests of equality are not always statistically significant when we 

disaggregate it by country of origin. When Japanese software intensity is measured by citations 

to software in non-software patents, electronics is (insignificantly) more software intensive than 

semiconductors.   

14Our main results are robust to using firm-level software intensity assignments instead of 

industry classifications. 

15Downloaded from the following link: https://sites.google.com/site/patentdataproject/ 

(5/15/2011) 

16Kaisha Shiki Ho (Japan Company Handbooks) is an annual survey of Japanese firms, published 

by the Japanese equivalent of Dow Jones & Company, Toyo Keizai Inc.  We thank Ms. Kanako 

Hotta for assistance in obtaining these data from the collections at the School of International 

Relations and Pacific Studies of the University of California at San Diego. 
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17We obtained these data from the Bureau of Labor Statistics and Statistics Bureau of Japan, 

respectively. 

18See Griliches and Mairesse (1984) and Hall (1990) for a detailed description and discussion of 

this methodology. We used several depreciation rates between 10% and 30%, with little change 

in the results. 

19When the expenditure data was not available, we used first 5 years of available R&D 

expenditure data, “backcast them” using linear extrapolation, and calculated the initial R&D 

capital stock based on the projected R&D expenditures. 

20Perfect and Wiles (1994) suggests that the measurement error in using book value of debt is 

modest.   

21Perfect and Wiles (1994) note that different calculation methodologies do result in different 

absolute replacement cost values, but do not seem to bias coefficients on R&D capital. 

22In the mid-2000s, Japanese electronics firms received a boost from the rapidly growing sale of 

so-called digital appliances, such as DVD recorders, digital cameras, and LCD televisions.  

Industry observers, such as Ikeda (2003), warned of imminent commoditization of these new 

products – a prediction that has been born out in the latter years of the decade. 

23An earlier version of the paper used data that ended in the late 1990s, raising the possibility that 

our results were driven by the late 1990s IT bubble. Extension of our data into the mid-2000s 

shows that this is not the case. We thank an anonymous referee for pushing us to extend these 

data. 

24See Jorgenson and Nomura (2005) and Hamada and Okada (2009) for a discussion of the 

impact of exchange rate movements on Japanese industry and the overall economy. 
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25Towards the end of the 1990s, a small number of publicly listed firms, such as Softbank, that 

we could classify as software firms appeared on the Tokyo Stock Exchange. Motohashi (2009) 

uses a different data set to explore productivity trends in the Japanese software industry, but does 

not attempt an international comparison. 

26We thank an anonymous referee for stressing the importance of this event.  Jorgenson and 

Nomura (2005) discuss this event and show that the pace of IT price declines in Japan 

accelerates after the introduction of DOS/V. 

27In unreported estimates, we obtain similar results if we divide our sample into the following 

periods, 83-88, 89-93, 94-99, and 2000-2004. 

28Interestingly, Jorgenson and Nomura find quite different trends in the communications 

equipment industry.  The firms in our sample include many major Japanese manufacturers of 

communications equipment, but as one of many lines of business.  Given our data, we cannot 

separately analyze the communications equipment business units of IT firms. 

29As we were writing this paper, we became aware of the work of Cole (2006) and Cole and 

Fushimi (2011), who use narrative history and interviews with practitioners to suggest that the 

changing fortunes of the U.S. and Japanese IT industries are linked to the superior ability of 

American firms to exploit software advances in their new product development.  Our quantitative 

analysis is broadly consistent with their interview-based description. 

30Finan and Williams (1992) and Cusumano (1991, 2005) discuss the scarcity of software 

engineers, as do Fransman (1995), the Japanese Ministry of Internal Affairs and 

Communications (2005), and Kurokawa and Hayashi (2008). 

31Some Japanese firms, most notably in videogames, have maintained a strong international 

market positions in software-intensive segments of IT.  However, videogames sales are driven by 
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artistic factors as well as purely technological ones, and Japanese developers have a rich local 

cultural tradition of manga (a Japanese art form akin to comic books in the West) and anime 

(animated films) to draw upon.    

32Branstetter (2006) finds a positive but limited impact of U.S. R&D centers on the research 

productivity of Japanese firms' home R&D operations.  Anchordoguy (2000) argues that tapping 

into foreign pools of software knowledge was especially difficult for Japanese firms, given 

language barriers and differences in labor market practices.   

33Kojima and Kojima (2007) examine the available data on Japanese offshoring of software 

development to other countries.  While the data are highly problematic, they suggest a very low 

level of offshoring relative to the U.S. – something as low as 5-10% of the U.S. level – even by 

the mid-2000s. 

34U.S. data are from the NSF’s SESTAT survey (http://www.nsf.gov/statistics/recentgrads/) and 

the annual Survey of Earned Doctorates http://www.nsf.gov/statistics/doctorates/. Data for Japan 

is taken from the Japanese Ministry of Education, Sports, and Welfare’s Basic School Survey. 

We thank Professor Kyoji Fukao of Hitotsubashi University and Professor Takao Kato of 

Colgate University and Professor Anthony D’Costa of Copenhagen Business School for helping 

us identify and obtain the Japanese data sources used in this paper. 

35Japanese statistics track newly registered foreign workers across a number of broad categories 

including “researchers,” “engineers,” and “intracompany transferees.”  These data are reported 

annually in the Shutsu Nyukoku Kanri Toukei Nenpo (Annual Report of Statistics on Legal 

Migrants), published by the Japanese Ministry of Justice. 

36Only a fraction of IT graduates will enter employment in IT industries in the countries in which 

they study, and only a fraction of those who obtain employment in the IT industry will be 
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engaged in research.  Likewise, our estimates of H-1B temporary workers include individuals 

employed in IT companies as well as individuals working for banks and insurance companies, 

and only a fraction of the H-1Bs employed in IT companies are involved in research.  These data 

track (potential) new entrants to the IT workforce, not the total stocks of workers available for 

employment in the sector. 

37The growing literature on software patents has examined the impact of software patentability 

on R&D and the impact of software patents on venture firm financing, but it has not yet 

addressed the impact of software technology on innovation elsewhere in IT. See Bessen and 

Hunt (2007), Hall and MacGarvie (2010), and Cockburn and MacGarvie (2009). 
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Table I: Citation Function Results 

      Full Sample Citations to Software Patents Only 
   Coefficient Std. Error Coefficient Std. Error 
Citing Grant Year      

1991   0.4549   ** 0.1760 0.5013 *** 0.1662 
1992   0.6572 *** 0.1783 0.7418 *** 0.1716 
1993   0.7317 *** 0.1683 0.8482 *** 0.1645 
1994   1.0131 *** 0.1750 1.2010 *** 0.1752 
1995   1.2123 *** 0.1717 1.4509 *** 0.1742 
1996   1.5258 *** 0.1722 1.8499 *** 0.1779 
1997   1.5966 *** 0.1548 1.9673 *** 0.1619 
1998   1.7073 *** 0.1378 2.1389 *** 0.1462 
1999   1.6623 *** 0.1156 2.1203 *** 0.1239 
2000   1.5740 *** 0.0960 2.0478 *** 0.1039 
2001  2.1979 *** 0.0966 2.8943 *** 0.1072 
2002  2.3529 *** 0.0915 3.1451 *** 0.1029 
2003  2.3546 *** . 3.1691 *** . 

Cited Grant Year        
1990   -0.0958 *** 0.0197 -0.1078 *** 0.0174 
1991   -0.3330 *** 0.0191 -0.3621 *** 0.0165 
…   … … … … 

2001   -0.8881 *** 0.0157 -0.9138 *** 0.0112 
2002   -0.9167 *** 0.0191 -0.9367 *** 0.0137 

Citing Patent Type          
Comp. Hard/Software 1.0414  *** 0.0398 1.1936  *** 0.0403 
Computer Peripherals 0.4806  *** 0.0345 0.5443  *** 0.0339 
Information Storage 0.3778  *** 0.0324 0.4296  *** 0.0317 
Other Comp. & Comm. 2.3707  *** 0.0652 2.7084  *** 0.0674 
Electrical Devices -0.8256 *** 0.0209 -0.9188 *** 0.0192 
Semiconductors -0.6657 *** 0.0199 -0.7863 *** 0.0186 

Other     

Citing From Japan -0.3078  *** 0.0313 -0.6298  *** 0.0059 
Cited Software Patent 9.4217    *** 0.2573 n/a n/a 

Citing From Japan 
X 

Cited Software  

  
  -6.2592   *** 0.1981 n/a n/a 

Obsolescence   0.3252     *** 0.0095 0.3398    *** 0.0087 
Diffusion     3.61e-06 *** 4.79e-07 3.56e-04 *** 4.27e-06 
Adj R-Squared   0.9232 0.9674 
Number of Obs.   2940 1470 
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The data for regression estimations presented in this table are drawn from the CASSIS patent 

database maintained by the United States Patent and Trademark Office and from the NBER 

Patent Data Project database. Regression specifications are estimated in STATA using the 

nonlinear least squares algorithm. The dependent variable is an empirical measure of the 

probability a citing patent of a given type cites a cited patent of a given type. All presented 

coefficients are relative to base categories. They are the following: citing patent grant year = 

1990, cited patent grant year = 1989, citing patent type = “Communications”, cited patent 

category = “non-software” (only applicable to column I), citing patent geography = “Japan”. 

Patent origin is defined using all inventors listed on the patent document. 
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Table II: Firm-Level Software Intensity by Sector, 1983-2004 

  Share of Software Patents Share of Citations to Software Patents 
Industry No. of Obs. Mean St. Dev. No. of Obs. Mean St. Dev. 

Electronics 65 0.0387 
(***/***) 

0.0808 65 0.0544 
(*/***) 

0.0654 

Semiconductors 53 0.1069 
(***/***) 

0.1246 53 0.0768 
(*/***) 

0.0837 

IT Hardware 92 0.1974 
(***/***) 

0.1681 92 0.1428 
(***/***) 

0.1109 

This table compares measures of software intensity of firms in our sample that belong to 

different subsectors. The data used to construct measures of software intensity come from the 

CASSIS patent database maintained by the United States Patent and Trademark Office and from 

the NBER Patent Data Project database. The unit of observation for descriptive statistics and 

statistical tests presented in this table is a firm. The share of software patents for each firm is 

computed as the number of software patents granted to a firm in the sample period divided by the 

total number of patents granted to that firm in the sample period. The share of citations to 

software patents for each firm is calculated as the number of citations directed to software 

patents generated by the firm's non-software IT patent portfolio divided by the total number of 

citations generated by the firm's non-software IT patent portfolio. The tests for differences in 

means across sectors are performed using one-sided t-tests and are reported in the brackets next 

to the value of the mean. (***) represents the difference being significant at the 0.01 level, (**) 

at 0.05, and (*) at 0.1. The first series of asterisks in any given bracket represent the results of a 

one-sided t-test for differences of means using the sector in question and the sector listed in the 

row above, while the second series of asterisks represents the results of a one-sided t-test using 

the sector in question and the sector listed in the row below. For sectors listed in the first row, the 

first series of asterisks refer to a comparison with the sector listed in row immediately below, 
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while the second series of asterisks refer to a comparison with the sector listed in the final row. 

An identical system applies to the interpretation of asterisks for sectors listed in the final row. 
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Table II-2: Patent-Level Software Intensity by Sector, 1983-2004 

  Share of Software Patents Share of Citations to Software Patents 
Industry No. of Obs. Mean St. Dev. No. of Obs. Mean St. Dev. 

Electronics 67775 0.0476 
(***/***) 

0.2130 23452 0.0532 
(***/***) 

0.1429 

Semiconductors 83609 0.0995 
(***/***) 

0.2994 48214 0.0742 
(***/***) 

0.1678 

IT Hardware 251422 0.1439 
(***/***) 

0.3510 126339 0.1127 
(***/***) 

0.2092 

This table compares measures of software intensity of firms in our sample that belong to 

different subsectors. The data used to construct measures of software intensity come from the 

CASSIS patent database maintained by the United States Patent and Trademark Office and from 

the NBER Patent Data Project database. The unit of observation for descriptive statistics and 

statistical tests presented in this table is a patent. The share of software patents for each sector is 

computed as the number of software patents granted to all firms belonging to that sector in the 

sample period divided by the total number of patents granted to firms in that sector in the sample 

period. The share of citations to software patents for each sector is calculated as the number of 

citations directed to software patents generated by all firms’ non-software IT patent portfolios 

divided by the total number of citations generated all firms’ non-software IT patent portfolio. 

The tests for differences in means across sectors are performed using one-sided t-tests and are 

reported in the brackets next to the value of the mean. (***) represents the difference being 

significant at the 0.01 level, (**) at 0.05, and (*) at 0.1. The first series of asterisks in any given 

bracket represent the results of a one-sided t-test for differences of means using the sector in 

question and the sector listed in the row above, while the second series of asterisks represents the 

results of a one-sided t-test using the sector in question and the sector listed in the row below. 

For sectors listed in the first row, the first series of asterisks refer to a comparison with the sector 

listed in row immediately below, while the second series of asterisks refer to a comparison with 
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the sector listed in the final row. An identical system applies to the interpretation of asterisks for 

sectors listed in the final row. 
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Table III: Software Patent Shares by Sector and Firm Origin, 1983-2004 

  U.S. Firms Japanese Firms 
Industry No. of Obs. Mean St. Dev. No. of Obs. Mean St. Dev. 

Electronics 22 0.0806 
 (*/***) 

0.1425 43 0.0173  
(/***) 

0.0195 

Semiconductors 41 0.1341  
(*/***) 

0.1292 12 0.0138  
(/***) 

0.0213 

IT Hardware 70 0.2411 
(***/***) 

0.1699 22 0.0585 
(***/***) 

0.0329 

Unit of observation is a firm 
 

    

  U.S. Firms Japanese Firms 
Industry No. of Obs. Mean St. Dev. No. of Obs. Mean St. Dev. 

Electronics 38902 0.0647 
(***/***) 

0.2460 28873 0.0247 
(***/***) 

0.1551 

Semiconductors 56833 0.1324 
(***/***) 

0.3389 26776 0.0298 
(***/***) 

0.1700 

IT Hardware 104998 0.2337 
(***/***) 

0.4232 146424 0.0795 
(***/***) 

0.2705 

Unit of observation is a patent 
 

    

This table compares measures of software intensity of firms in our sample that belong to 

different subsectors, separately for those firms based in Japan and those based in the United 

States. The data used to construct measures of software intensity come from the CASSIS patent 

database maintained by the United States Patent and Trademark Office and from the NBER 

Patent Data Project database. The unit of observation for descriptive statistics and statistical tests 

presented in the upper panel is a firm, while it is a patent in the lower panel. For details about the 

construction of software intensity measures please consult Table II. The tests for differences in 

means across sectors are performed using one-sided t-tests and are reported in the brackets next 

to the value of the mean. (***) represents the difference being significant at the 0.01 level, (**) 

at 0.05, and (*) at 0.1. The first series of asterisks in any given bracket represent the results of a 

one-sided t-test for differences of means using the sector in question and the sector listed in the 

row above, while the second series of asterisks represents the results of a one-sided t-test using 
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the sector in question and the sector listed in the row below. For sectors listed in the first row, the 

first series of asterisks refer to a comparison with the sector listed in row immediately below, 

while the second series of asterisks refer to a comparison with the sector listed in the final row. 

An identical system applies to the interpretation of asterisks for sectors listed in the final row. 
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Table III-2: Share of Citations to Software by Non-Software IT Patents by Sector and Firm 

Origin, 1983-2004 

  U.S. Firms Japanese Firms 
Industry No. of Obs. Mean St. Dev. No. of Obs. Mean St. Dev. 

Electronics 22 0.0761 
 (/***) 

0.0921 43 0.0435  
(/***) 

0.0452 

Semiconductors 41 0.0895  
(/***) 

0.0884 12 0.0286  
(/***) 

0.0334 

IT Hardware 70 0.1647 
(***/***) 

0.1173 22 0.0738 
(***/***) 

0.0384 

Unit of observation is a firm 
 

    

  U.S. Firms Japanese Firms 
Industry No. of Obs. Mean St. Dev. No. of Obs. Mean St. Dev. 

Electronics 12915 0.0617 
(***/***) 

0.1504 10537 0.0430 
(***/***) 

0.1325 

Semiconductors 36389 0.0797 
(***/***) 

0.1726 11825 0.0572 
(***/***) 

0.1507 

IT Hardware 53706 0.1466 
(***/***) 

0.2326 72633 0.0877 
(***/***) 

0.1862 

Unit of observation is a patent 
 

    

This table compares measures of software intensity of firms in our sample that belong to 

different subsectors, separately for those firms based in Japan and those based in the United 

States. The data used to construct measures of software intensity come from the CASSIS patent 

database maintained by the United States Patent and Trademark Office and from the NBER 

Patent Data Project database. The unit of observation for descriptive statistics and statistical tests 

presented in the upper panel is a firm, while it is a patent in the lower panel. For details about the 

construction of software intensity measures please consult Table II-2. The tests for differences in 

means across sectors are performed using one-sided t-tests and are reported in the brackets next 

to the value of the mean. (***) represents the difference being significant at the 0.01 level, (**) 

at 0.05, and (*) at 0.1. The first series of asterisks in any given bracket represent the results of a 

one-sided t-test for differences of means using the sector in question and the sector listed in the 
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row above, while the second series of asterisks represents the results of a one-sided t-test using 

the sector in question and the sector listed in the row below. For sectors listed in the first row, the 

first series of asterisks refer to a comparison with the sector listed in row immediately below, 

while the second series of asterisks refer to a comparison with the sector listed in the final row. 

An identical system applies to the interpretation of asterisks for sectors listed in the final row. 
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Table IV: Tobin’s Q Regressions by Period, 1983-2004 

  Entire Sample 1983-1988 1989-1993 1994-1999 2000-2004 
lnQ NLS NLS NLS NLS NLS 

RD/Assets 
0.1087 0.0158 -0.0564 0.2196 -0.0579 

(0.0415) *** (0.1451) (0.0812) (0.0897) ** (0.0495) 
RD/Assets  
* Japan 

-0.1327 0.0008 0.0250 -0.2844 -0.2916 
(0.0556) ** (0.1516) (0.1129) (0.1310) ** (0.1408) ** 

lnSales 
0.0356 0.0198 0.0309 0.0995 0.0966 

(0.0039) *** (0.0069) *** (0.0062) *** (0.0059) *** (0.0050) *** 
No. of Obs. 3571 825 833 1082 831 
R-squared 0.2986 0.2763 0.2429 0.4414 0.4049 

The data for regression estimations presented in this table were obtained from Compustat and the 

Development Bank of Japan for U.S. and Japanese firms, respectively. R&D expenditure data for 

Japanese firms comes from annual volumes of the Kaisha Shiki Ho survey. The data represent an 

unbalanced panel of large publicly traded U.S. and Japanese IT firms active in the sample period, 

1983-2004. As a consequence of using an unbalanced panel, total number of observations used in 

regression estimations can vary between time periods. Regression specifications are estimated in 

STATA using the nonlinear least squares algorithm. The dependent value is the log of Tobin’s 

Q, which is calculated as the ratio of the firm’s market value to the replacement value of its total 

assets. RD/Assets are calculated as the ratio of the stock of firm’s accumulated R&D 

expenditures, calculated using the perpetual inventory method, to the replacement value of the 

firm’s total assets. The Japan dummy equals 1 if the firm is based in Japan. Standard errors are 

reported in brackets. For detailed information about the specification, sample selection, and 

variable construction, please consult the main body of the paper. The asterisks that are listed next 

to coefficients reported in the table denote statistical significance in the following manner: (***) 

represents significance at the 0.01 level, (**) at 0.05, and (*) at 0.1. For brevity, only coefficients 

on variables of interest are reported, while coefficients on some of the control variables may be 

omitted. Detailed estimation results are available from the authors by request. 
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Table IV-2: Tobin’s Q Regressions by Period, Including Firm-Level Software Intensity, 

1983-2004 

  Entire Sample 1983-1988 1989-1993 1994-1999 2000-2004 
lnQ NLS NLS NLS NLS NLS 

RD/Assets 
-0.2342 -0.2302 -0.2020 -0.1580 -0.2412 

(0.0553) *** (0.1554) (0.0945) ** (0.1189) (0.0820) *** 
RD/Assets  
* Japan 

0.1992 0.2227 0.1615 0.0779 -0.1365 
(0.0651) *** (0.1593) (0.1208) (0.1483) (0.1478) 

RD/Assets 
* Sof. Int. 

0.9752 2.4214 0.7938 0.9375 0.7052 
(0.1844) *** (0.6740) *** (0.3688) ** (0.3365) *** (0.2968) ** 

lnSales 
0.0419 0.0135 0.0305 0.1093 0.0995 

(0.0039) *** (0.0070) * (0.0062) *** (0.0061) *** (0.0049) *** 
No. of Obs. 3571 825 833 1082 831 
R-squared 0.3052 0.2884 0.2465 0.4452 0.4089 

The data for regression estimations presented in this table were obtained from Compustat and the 

Development Bank of Japan for U.S. and Japanese firms, respectively. R&D expenditure data for 

Japanese firms comes from annual volumes of the Kaisha Shiki Ho survey. Firm-level software 

intensity measures were calculated using data from the CASSIS patent database maintained by 

the United States Patent and Trademark Office and from the NBER Patent Data Project database. 

The data represent an unbalanced panel of large publicly traded U.S. and Japanese IT firms 

active in the sample period, 1983-2004. As a consequence of using an unbalanced panel, total 

number of observations used in regression estimations can vary between time periods. 

Regression specifications are estimated in STATA using the nonlinear least squares algorithm. 

The dependent value is the log of Tobin’s Q, which is calculated as the ratio of the firm’s market 

value to the replacement value of its total assets. RD/Assets are calculated as the ratio of the 

stock of firm’s accumulated R&D expenditures, calculated using the perpetual inventory method, 

to the replacement value of the firm’s total assets. The Japan dummy equals 1 if the firm is based 

in Japan. Standard errors are reported in brackets. For detailed information about specification, 
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sample selection, and variable construction, please consult the main body of the paper. 

Regression analysis presented in this table is identical to that presented in Table IV above, except 

that a measure of firm-level software intensity has been added to the specification. The asterisks 

that are listed next to coefficients reported in the table denote statistical significance in the 

following manner: (***) represents significance at the 0.01 level, (**) at 0.05, and (*) at 0.1. For 

brevity, only coefficients on variables of interest are reported, while coefficients on some of the 

control variables may be omitted. Detailed estimation results are available from the authors by 

request. 
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Table V: Patent Production Function Regressions, Japanese Indicator and Time Trends, Entire Sample and By Sector,  

1983-2004 

      Entire Sample Electronics Semiconductors IT Hardware 
      OLS RE FE OLS RE FE OLS RE FE OLS RE FE 

Log R&D 
0.9814 0.7429 0.6682 0.9456 0.6944 0.6208 0.9725 0.8241 0.6761 0.9541 0.6865 0.6186 

(0.0392) (0.0463) (0.0542) (0.0762) (0.0465) (0.0672) (0.0907) (0.1019) (0.1205) (0.0582) (0.0718) (0.0817) 

1989-1993 
0.0066 0.1056 0.1237 0.1132 0.2701 0.3049 0.1310 0.1312 0.1378 0.0029 0.0983 0.1136 

(0.0765) (0.0668) (0.0680) (0.1771) (0.0982) (0.0995) (0.1660) (0.1411) (0.1420) (0.0954) (0.0937) (0.0969) 

1994-1999 
0.1151 0.4168 0.4942 -0.2141 0.0723 0.1328 0.2525 0.6259 0.8167 0.2313 0.4461 0.5067 

(0.1269) (0.1142) (0.1174) (0.3336) (0.3504) (0.3598) (0.2278) (0.1931) (0.2002) (0.1677) (0.1380) (0.1414) 

2000-2004 
0.5053 1.0171 1.1456 -0.1647 0.3258 0.4280 0.3877 1.0983 1.4642 0.9636 1.1928 1.2684 

(0.1381) (0.1230) (0.1294) (0.2629) (0.2137) (0.2235) (0.2581) (0.2317) (0.2553) (0.1954) (0.1718) (0.1752) 
Japan 
Dummy 

0.7363 0.8482 n.a -0.0607 -0.1600 n.a 0.5806 0.7832 n.a. 1.2059 1.5392 n.a. 
(0.1796) (0.1922)  (0.2692) (0.3053)  (0.3523) (0.3951)  (0.2835) (0.2843)  

Japan * 
1989-1993 

-0.3033 -0.1823 -0.1584 -0.5258 -0.4881 -0.4850 -0.1639 0.0697 0.1415 -0.1511 -0.0052 0.0230 
(0.1116) (0.0984) (0.0994) (0.2069) (0.1341) (0.1345) (0.2761) (0.2772) (0.2795) (0.1702) (0.1451) (0.1456) 

Japan * 
1994-1999 

-0.5294 -0.5037 -0.5111 -0.3492 -0.2176 -0.2118 -0.4814 -0.5691 -0.5924 -0.3786 -0.4228 -0.4283 
(0.1713) (0.1435) (0.1451) (0.3706) (0.3584) (0.3666) (0.4434) (0.4132) (0.4172) (0.2414) (0.2086) (0.2100) 

Japan * 
2000-2004 

-0.8835 -1.0319 -1.0758 -0.3181 -0.4322 -0.4551 -0.6613 -1.0342 -1.1847 -1.0342 -0.9954 -1.0056 
(0.1884) (0.1740) (0.1759) (0.3145) (0.2392) (0.2407) (0.5045) (0.5781) (0.6008) (0.2905) (0.2771) (0.2781) 

The firm-level R&D expenditure data for regression estimations presented in this table were obtained from Compustat and annual 

volumes of the Kaisha Shiki Ho survey for U.S. and Japanese firms, respectively. Patent data come from the CASSIS patent database 

maintained by the United States Patent and Trademark office and from the NBER Patent Data Project database. The data represent an 

unbalanced panel of large publicly traded U.S. and Japanese IT firms active in the sample period, 1983-2004. The dependent variable 

is the log of the number of total patents granted in a given year. The Japan dummy equals 1 when a firm is based in Japan. Regression 
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specifications are estimated in STATA using ordinary least squares, random effects, and fixed effects algorithms. Robust and cluster-

corrected standard errors are reported in brackets. For detailed information about the specification, sample selection, and variable 

construction, please consult the main body of the paper. For brevity, only coefficients on variables of interest are reported, while 

coefficients on some of the control variables may be omitted. Detailed estimation results are available from the authors by request. 
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Table VI: Tobin’s Q Regressions, Comparing Time Trends, By Country, 1983-2004 

  Entire Sample   US   Japan   

lnQ 
  

FE   NLLS   FE   NLLS   FE   NLLS  
RD/Assets -0.0814 -0.0167 -1.1304 -0.5120 -0.0273 0.0115 

(0.1257) (0.0442) (0.2753) *** (0.1310) *** (0.0497) (0.0352) 
RD/Assets * 1989-93 -0.3011 -0.1369 0.6919 0.1800 -0.1295 -0.0209 

(0.1016) *** (0.0552) ** (0.2890) ** (0.1447) (0.0421) *** (0.0768) 
RD/Assets * 1994-99 0.1375 0.1309 1.1809 0.5798 -0.1191 -0.0086 

(0.1262) (0.0700) * (0.2753) *** (0.1390) *** (0.0563) ** (0.0795) 
RD/Assets * 2000-04 0.0611 -0.0396 0.9727 0.3475 -0.1678 -0.0897 

(0.1460) (0.0663) (0.2932) *** (0.1366) ** (0.2461) (0.1303) 
No. of Obs. 3571 3571 1978 1978 1593 1593 

The data for regression estimations presented in this table were obtained from Compustat and the Development Bank of Japan for U.S. 

and Japanese firms, respectively. R&D expenditure data for Japanese firms comes from annual volumes of the Kaisha Shiki Ho 

survey. The data represent an unbalanced panel of large publicly traded U.S. and Japanese IT firms active in the sample period, 1983-

2004. The regression estimation results presented in this table are analogous to those presented in Tables IV and IV-2, except that they 

include a direct estimation of the time trends. Regression specifications are estimated in STATA. A linearized version of the 

specification is estimated using the fixed effects algorithm, while a nonlinear version of the specification is estimated using the 

nonlinear least squares algorithm. The dependent value is the log of Tobin’s Q, which is calculated as the ratio of the firm’s market 

value to the replacement value of its total assets. RD/Assets are calculated as the ratio of the stock of firm’s accumulated R&D 

expenditures, calculated using the perpetual inventory method, to the replacement value of the firm’s total assets. Standard errors are 
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reported in brackets. Robust and cluster-corrected standard errors are reported for specifications estimated using the fixed effects 

algorithm. For detailed information about the specification, sample selection, and variable construction, please consult the main body 

of the paper. The asterisks that are listed next to coefficients reported in the table denote statistical significance in the following 

manner: (***) represents significance at the 0.01 level, (**) at 0.05, and (*) at 0.1. For brevity, only coefficients on variables of 

interest are reported, while coefficients on some of the control variables may be omitted. Detailed estimation results are available from 

the authors by request. 
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Table VII: Tobin’s Q Regressions, By Industry and Time Period, Fixed Effects, 1983-2004 

Electronics Semiconductors IT Hardware 
lnQ 1983-1993 1994-2004 1983-1993 1994-2004 1983-1993 1994-2004 

RD/Assets 
-0.3464 -1.1880 -0.7058 0.0609 -0.3933 -0.2278 
(0.3059) (0.3865) *** (0.1752) *** (0.0017) *** (0.3095) (0.1496) 

RD/Assets 
* Japan 

0.2789 1.1019 0.6043 -0.6449 -0.0335 -0.3502 
(0.3040) (0.4283) ** (0.1966) *** (0.9356) (0.5447) (0.4091) 

No. of Obs. 603 638 349 530 706 745 
R-squared 0.1158 0.1030 0.0286 0.0796 0.0966 0.1089 
The data for regression estimations presented in this table were obtained from Compustat and the Development Bank of Japan for U.S. 

and Japanese firms, respectively. R&D expenditure data for Japanese firms comes from annual volumes of the Kaisha Shiki Ho 

survey. The data represent an unbalanced panel of large publicly traded U.S. and Japanese IT firms active in the sample period, 1983-

2004. As a consequence of using an unbalanced panel, total number of observations used in regression estimations can vary between 

time periods. Regression specifications are estimated in STATA using the fixed effects algorithm. The dependent value is the log of 

Tobin’s Q, which is calculated as the ratio of the firm’s market value to the replacement value of its total assets. RD/Assets are 

calculated as the ratio of the stock of firm’s accumulated R&D expenditures, calculated using the perpetual inventory method, to the 

replacement value of the firm’s total assets. The Japan dummy equals 1 if the firm is based in Japan. Robust and cluster-corrected 

standard errors are reported in brackets. For detailed information about the specification, sample selection, and variable construction, 

please consult the main body of the paper. The asterisks that are listed next to coefficients reported in the table denote statistical 

significance in the following manner: (***) represents significance at the 0.01 level, (**) at 0.05, and (*) at 0.1. For brevity, only 
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coefficients on variables of interest are reported, while coefficients on some of the control variables may be omitted. Detailed 

estimation results are available from the authors by request. 
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Table VIII: Tobin’s Q Regressions, By Industry and Time Period, NLS, 1983-2004 

Electronics Semiconductors IT Hardware 
lnQ 1983-1993 1994-2004 1983-1993 1994-2004 1983-1993 1994-2004 

RD/Assets 
-0.0804 0.3760 -0.2752 0.2919 -0.1399 -0.1412 
(0.1216) (0.1995) * (0.0904) *** (0.1098) *** (0.1019) (0.0429) *** 

RD/Assets 
* Japan 

0.1070 -0.3838 0.1239 -1.5693 -0.3292 -0.3107 
(0.1271) (0.2147) * (0.1287) (0.2756) *** (0.3255) (0.2500) 

No. of Obs. 603 638 349 530 706 745 
R-squared 0.4826 0.2414 0.2416 0.6240 0.1431 0.3760 
The data for regression estimations presented in this table were obtained from Compustat and the Development Bank of Japan for U.S. 

and Japanese firms, respectively. R&D expenditure data for Japanese firms comes from annual volumes of the Kaisha Shiki Ho 

survey. The data represent an unbalanced panel of large publicly traded U.S. and Japanese IT firms active in the sample period, 1983-

2004. As a consequence of using an unbalanced panel, total number of observations used in regression estimations can vary between 

time periods. Regression specifications are estimated in STATA using the nonlinear least squares algorithm. The dependent value is 

the log of Tobin’s Q, which is calculated as the ratio of the firm’s market value to the replacement value of its total assets. RD/Assets 

are calculated as the ratio of the stock of firm’s accumulated R&D expenditures, calculated using the perpetual inventory method, to 

the replacement value of the firm’s total assets. The Japan dummy equals 1 if the firm is based in Japan. Standard errors are reported 

in brackets. For detailed information about the specification, sample selection, and variable construction, please consult the main body 

of the paper. The asterisks that are listed next to coefficients reported in the table denote statistical significance in the following 

manner: (***) represents significance at the 0.01 level, (**) at 0.05, and (*) at 0.1. For brevity, only coefficients on variables of 
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interest are reported, while coefficients on some of the control variables may be omitted. Detailed estimation results are available from 

the authors by request. 
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Figure 9-1: Software Intensity of Patenting (Share of Software Patents), by Geography of 

Invention and Country of Ownership, 1983-2004 
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This table compares a measure of firm-level software intensity of patenting for the firms in our 

sample by the geographical region of their origin and the geographical region of invention.  The 

data used to construct measures of software intensity come from the CASSIS patent database 

maintained by the United States Patent and Trademark Office and from the NBER Patent Data 

Project database. The software intensity variable is calculated as the share of software patents in 

total patents granted in the sample period, 1983-2004, averaged across all firms belonging to a 

given region of origin - region of invention combination. Geography of invention is determined 

using geographical locations of all inventors listed on the patent document. T-tests for 

differences in means across geographical groups show that differences are statistically significant 

at the 0.01 level in the case of all group pairs. 
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Figure 9-2: Software Intensity of Patenting (Share of Citations Made to Software), by 

Geography of Invention and Country of Ownership, 1983-2004 
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This table compares a measure of firm-level software intensity of patent citations for the firms in 

our sample by the geographical region of their origin and the geographical region of invention.  

The data used to construct measures of software intensity come from the CASSIS patent 

database maintained by the United States Patent and Trademark Office and from the NBER 

Patent Data Project database. The software intensity of citations variable is calculated as the 

share of citations made to software patents in total citations made by all patents granted to a firm 

in our sample period, 1983-2004, averaged across all firms belonging to a given region of origin 

- region of invention combination. Geography of invention is determined using geographical 

locations of all inventors listed on the patent document. T-tests for differences in means across 

geographical groups show that differences are statistically significant at the 0.01 level in the case 

of all group pairs. 
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Figure 9-3: Software Intensity of Patenting (Share of Software Patents), Japanese Owned 

Patents, by Industry and Geography of Invention, 1983-2004 
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This table compares a measure of firm-level software intensity of patenting for the Japanese 

firms in our sample by the geographical region of invention, separately for three industrial 

subsectors in Information Technology.  The data used to construct measures of software intensity 

come from the CASSIS patent database maintained by the United States Patent and Trademark 

Office and from the NBER Patent Data Project database. The software intensity variable is 

calculated as the share of software patents in total patents granted in the sample period, 1983-

2004, averaged across all firms belonging to a given region of invention - industrial subsector 

combination. Geography of invention is determined using geographical locations of all inventors 

listed on the patent document. T-tests for differences in means across geographical groups show 

that differences are statistically significant at the 0.01 level in the case of all group pairs, except 

in the case of "electronics" and "semiconductors" where the region of invention is USA. 
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Figure 9-4: Software Intensity of Patenting (Share of Citations Made to Software), 

Japanese Owned Patents, by Industry and Geography of Invention, 1983-2004 
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This table compares a measure of firm-level software intensity of patent citations for the 

Japanese firms in our sample by the geographical region of invention, separately for three 

industrial subsectors in Information Technology.  The data used to construct measures of 

software intensity come from the CASSIS patent database maintained by the United States 

Patent and Trademark Office and from the NBER Patent Data Project database. The software 

intensity of citations variable is calculated as the share of citations made to software patents in 

total citations made by all patents granted to a firm in our sample period, 1983-2004, averaged 

across all firms belonging to a region of invention - industrial subsector combination. Geography 

of invention is determined using geographical locations of all inventors listed on the patent 

document. T-tests for differences in means across geographical groups show that differences are 

statistically significant at the 0.01 level in the case of all group pairs, except in the case of 

"electronics" and "semiconductors" where the region of invention is USA. 


